DYNAMIC SHORTFALL CONSTRAINTS FOR
OPTIMAL PORTFOLIOS

Daniel Akume, Bernd Luderer and Ralf Wunderlich

Abstract. We consider a portfolio problem when a Tail Conditional Expectation constraint is imposed. The financial market is composed of \(n \) risky assets driven by geometric Brownian motion and one risk-free asset. The Tail Conditional Expectation is calculated for short intervals of time and imposed as risk constraint dynamically. The method of Lagrange multipliers is combined with the Hamilton-Jacobi-Bellman equation to insert the constraint into the resolution framework. A numerical method is applied to obtain an approximate solution to the problem. We find that the imposition of the Tail Conditional Expectation constraint when risky assets evolve following a log-normal distribution, curbs investment in the risky assets and diverts the wealth to consumption.

Full text

References

2010 Mathematics Subject Classification: 91G10, 93E20, 91B30, 37N40.
Keywords: Portfolio optimization; Risk management; Dynamic risk constraints; Tail Conditional Expectation.

This work was supported by the African Economic Research Consortium, Nairobi, Kenya.

http://www.utgjiu.ro/math/sma

**

Surveys in Mathematics and its Applications 5 (2010), 135 – 149

http://www.utmjiu.ro/math/sma

Daniel Akume
Mathematics Department,
University of Buea,
P.O Box 63 Buea, Cameroon.
e-mail: d_akume@yahoo.ca

Bernd Luderer
Faculty of Mathematics,
Chemnitz University of Technology,
09107, Chemnitz, Germany.
e-mail: b.luderer@mathematik.tu-chemnitz.de

Ralf Wunderlich
Mathematics Department,
Zwickau University of Applied Sciences,
08012, Zwickau, Germany.
e-mail: ralf.wunderlich@fh-zwickau.de