Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 056, 23 pages      arXiv:1512.02087
Contribution to the Special Issue on Tensor Models, Formalism and Applications

The Multi-Orientable Random Tensor Model, a Review

Adrian Tanasa abc
a) Univ. Bordeaux, LaBRI, UMR 5800, 351 cours de la Libération, 33400 Talence, France
b) IUF, 1 rue Descartes, 75231 Paris Cedex 05, France
c) H. Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele, Romania

Received December 08, 2015, in final form June 10, 2016; Published online June 15, 2016

After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the $1/N$ expansion and of the large $N$ limit ($N$ being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.

Key words: random tensor models; asymptotic expansions.

pdf (815 kb)   tex (640 kb)


  1. Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum gravity and generalized matrix models, Modern Phys. Lett. A 6 (1991), 1133-1146.
  2. Avohou R.C., Rivasseau V., Tanasa A., Renormalization and Hopf algebraic structure of the five-dimensional quartic tensor field theory, J. Phys. A: Math. Theor. 48 (2015), 485204, 20 pages, arXiv:1507.03548.
  3. Baratin A., Oriti D., Ten questions on Group Field Theory (and their tentative answers, J. Phys. Conf. Ser. 360 (2012), 012002, 10 pages, arXiv:1112.3270.
  4. Ben Geloun J., Ramgoolam S., Counting tensor model observables and branched covers of the 2-sphere, Ann. Inst. Henri Poincaré D 1 (2014), 77-138, arXiv:1307.6490.
  5. Ben Geloun J., Rivasseau V., A renormalizable 4-dimensional tensor field theory, Comm. Math. Phys. 318 (2013), 69-109, arXiv:1111.4997.
  6. Bonzom V., Combes F., The calculation of expectation values in Gaussian random tensor theory via meanders, Ann. Inst. Henri Poincaré D 1 (2014), 443-485, arXiv:1310.3606.
  7. Bonzom V., Combes F., Tensor models from the viewpoint of matrix models: the cases of loop models on random surfaces and of the Gaussian distribution, Ann. Inst. Henri Poincaré D 2 (2015), 1-47, arXiv:1304.4152.
  8. Bouttier J., Di Francesco P., Guitter E., Geodesic distance in planar graphs, Nuclear Phys. B 663 (2003), 535-567, cond-mat/0303272.
  9. Brézin É., Kazakov V.A., Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990), 144-150.
  10. Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv:1310.3736.
  11. Carrozza S., Discrete renormalization group for $\rm SU(2)$ tensorial group field theory, Ann. Inst. Henri Poincaré D 2 (2015), 49-112, arXiv:1407.4615.
  12. Dartois S., Gurau R., Rivasseau V., Double scaling in tensor models with a quartic interaction, J. High Energy Phys. 2013 (2013), no. 9, 088, 33 pages, arXiv:1307.5281.
  13. Dartois S., Rivasseau V., Tanasa A., The $1/N$ expansion of multi-orientable random tensor models, Ann. Henri Poincaré 15 (2014), 965-984, arXiv:1301.1535.
  14. Di Francesco P., Ginsparg P., Zinn-Justin J., $2$D gravity and random matrices, Phys. Rep. 254 (1995), 1-133, hep-th/9306153.
  15. Douglas M.R., Shenker S.H., Strings in less than one dimension, Nuclear Phys. B 335 (1990), 635-654.
  16. Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press, Cambridge, 2009.
  17. Freidel L., Group field theory: an overview, Internat. J. Theoret. Phys. 44 (2005), 1769-1783, \mboxhep-th/0505016.
  18. Freidel L., Gurau R., Group field theory renormalization in the 3D case: power counting of divergences, Phys. Rev. D 80 (2009), 044007, 20 pages, arXiv:0905.3772.
  19. Fusy E., Tanasa A., Asymptotic expansion of the multi-orientable random tensor model, Electron. J. Combin. 22 (2015), 1.52, 30 pages, arXiv:1408.5725.
  20. Gross D.J., Migdal A.A., Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), 127-130.
  21. Gurau R., The $1/N$ expansion of colored tensor models, Ann. Henri Poincaré 12 (2011), 829-847, arXiv:1011.2726.
  22. Gurau R., Colored group field theory, Comm. Math. Phys. 304 (2011), 69-93, arXiv:0907.2582.
  23. Gurau R., Rivasseau V., The $1/N$ expansion of colored tensor models in arbitrary dimension, Europhys. Lett. 95 (2011), 50004, 5 pages, arXiv:1101.4182.
  24. Gurau R., Ryan J.P., Colored tensor models - a review, SIGMA 8 (2012), 020, 78 pages, arXiv:1109.4812.
  25. Gurau R., Ryan J.P., Melons are branched polymers, Ann. Henri Poincaré 15 (2014), 2085-2131, arXiv:1302.4386.
  26. Gurau R., Schaeffer G., Regular colored graphs of positive degree, arXiv:1307.5279.
  27. Gurau R., Tanasa A., Youmans D.R., The double scaling limit of the multi-orientable tensor model, Europhys. Lett. 111 (2015), 21002, 6 pages, arXiv:1505.00586.
  28. Oriti D. (Editor), Approaches to quantum gravity: toward a new understanding of space, time and matter, Cambridge University Press, Cambridge, 2009.
  29. Oriti D., The quantum geometry of tensorial group field theories, in Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 379-384, arXiv:1211.5714.
  30. Raasakka M., Tanasa A., Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory, Sém. Lothar. Combin. 70 (2013), B70d, 29 pages, arXiv:1306.1022.
  31. Raasakka M., Tanasa A., Next-to-leading order in the large $N$ expansion of the multi-orientable random tensor model, Ann. Henri Poincaré 16 (2015), 1267-1281, arXiv:1310.3132.
  32. Rivasseau V., Non-commutative renormalization, in Quantum Spaces, Prog. Math. Phys., Vol. 53, Birkhäuser, Basel, 2007, 19-107.
  33. Rivasseau V., The tensor track, III, Fortschr. Phys. 62 (2014), 81-107, arXiv:1311.1461.
  34. Sasakura N., Tensor model for gravity and orientability of manifold, Modern Phys. Lett. A 6 (1991), 2613-2623.
  35. Schaeffer G., Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees, Electron. J. Combin. 4 (1997), 20, 14 pages.
  36. Tanasa A., Combinatorics of random tensor models, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 13 (2012), 27-31, arXiv:1203.5304.
  37. Tanasa A., Multi-orientable group field theory, J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694.
  38. Tanasa A., Tensor models, a quantum field theoretical particularization, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 13 (2012), 225-234, arXiv:1211.4444.

Previous article  Next article   Contents of Volume 12 (2016)