Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 9 (2013), 078, 14 pages      arXiv:1309.6464      http://dx.doi.org/10.3842/SIGMA.2013.078
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa

Integrable Hierarchy of the Quantum Benjamin-Ono Equation

Maxim Nazarov and Evgeny Sklyanin
Department of Mathematics, University of York, York YO10 5DD, United Kingdom

Received September 26, 2013, in final form December 03, 2013; Published online December 07, 2013

Abstract
A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables $x_1,x_2,\ldots$. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions $p_n=x_1^n+x_2^n+\cdots$ and is based on our recent results from [Comm. Math. Phys. 324 (2013), 831-849].

Key words: Jack symmetric functions; quantum Benjamin-Ono equation; collective variables.

pdf (395 kb)   tex (19 kb)

References

  1. Ablowitz M.J., Fokas A.S., Satsuma J., Segur H., On the periodic intermediate long wave equation, J. Phys. A: Math. Gen. 15 (1982), 781-786.
  2. Awata H., Matsuo Y., Odake S., Shiraishi J., Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995), 49-55, hep-th/9411053.
  3. Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559-592.
  4. Cai W., Jing N., Applications of a Laplace-Beltrami operator for Jack polynomials, European J. Combin. 33 (2012), 556-571, arXiv:1101.5544.
  5. Kaup D.J., Lakoba T.I., Matsuno Y., Complete integrability of the Benjamin-Ono equation by means of action-angle variables, Phys. Lett. A 238 (1998), 123-133.
  6. Kaup D.J., Matsuno Y., The inverse scattering transform for the Benjamin-Ono equation, Stud. Appl. Math. 101 (1998), 73-98.
  7. Krichever I., Vaninsky K.L., The periodic and open Toda lattice, in Mirror Symmetry, IV (Montreal, QC, 2000), AMS/IP Stud. Adv. Math., Vol. 33, Amer. Math. Soc., Providence, RI, 2002, 139-158, hep-th/0010184.
  8. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  9. Nazarov M.L., Sklyanin E.K., Sekiguchi-Debiard operators at infinity, Comm. Math. Phys. 324 (2013), 831-849, arXiv:1212.2781.
  10. Nazarov M.L., Sklyanin E.K., Macdonald operators at infinity, J. Algebr. Comb. (2013), arXiv:1212.2960.
  11. Okounkov A., Pandharipande R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), 523-557, math.AG/0411210.
  12. Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), 1082-1091.
  13. Polychronakos A.P., Waves and solitons in the continuum limit of the Calogero-Sutherland model, Phys. Rev. Lett. 74 (1995), 5153-5157, hep-th/9411054.
  14. Schiffmann O., Vasserot E., Cherednik algebras, $W$-algebras and the equivariant cohomology of the moduli space of instantons on ${\mathbb A}^2$, Publ. Math. IHÉS 118 (2013), 213-342, arXiv:1202.2756.
  15. Shiraishi J., A family of integral transformations and basic hypergeometric series, Comm. Math. Phys. 263 (2006), 439-460.
  16. Sklyanin E.K., Bispectrality for the quantum open Toda chain, J. Phys. A: Math. Theor. 46 (2013), 382001, 9 pages, arXiv:1306.0454.
  17. Stembridge J., Maple packages for symmetric functions, posets, root systems, and finite Coxeter groups, available at http://www.math.lsa.umich.edu/~jrs/maple.html\#SF.
  18. Takasaki K., Integrable systems whose spectral curves are the graph of a function, in Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, Vol. 37, Amer. Math. Soc., Providence, RI, 2004, 211-222, nlin.SI/0211021.
  19. Ujino H., Wadati M., Hikami K., The quantum Calogero-Moser model: algebraic structures, J. Phys. Soc. Japan 62 (1993), 3035-3043.
  20. Vaninsky K.L., On explicit parametrisation of spectral curves for Moser-Calogero particles and its applications, Int. Math. Res. Not. 1999 (1999), 509-529, solv-int/9808018.

Previous article  Next article   Contents of Volume 9 (2013)