Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 9 (2013), 071, 9 pages      arXiv:1307.3775      http://dx.doi.org/10.3842/SIGMA.2013.071
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel

Levi-Civita's Theorem for Noncommutative Tori

Jonathan Rosenberg
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Received July 26, 2013, in final form November 19, 2013; Published online November 21, 2013

Abstract
We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas.

Key words: noncommutative torus; noncommutative vector field; Riemannian metric; Levi-Civita connection; Riemannian curvature; Gauss-Bonnet theorem.

pdf (333 kb)   tex (15 kb)

References

  1. Bratteli O., Elliott G.A., Jorgensen P.E.T., Decomposition of unbounded derivations into invariant and approximately inner parts, J. Reine Angew. Math. 346 (1984), 166-193.
  2. Connes A., C* algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599-A604, hep-th/0101093.
  3. Connes A., Moscovici H., Modular curvature for noncommutative two-tori, arXiv:1110.3500.
  4. Connes A., Tretkoff P., The Gauss-Bonnet theorem for the noncommutative two torus, in Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, 141-158, arXiv:0910.0188.
  5. do Carmo M.P., Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992.
  6. Elliott G.A., The diffeomorphism group of the irrational rotation C*-algebra, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 329-334.
  7. Fathizadeh F., Khalkhali M., Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., to appear, arXiv:1110.3511.
  8. Fathizadeh F., Khalkhali M., The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure, J. Noncommut. Geom. 6 (2012), 457-480, arXiv:1005.4947.
  9. Fathizadeh F., Khalkhali M., Scalar curvature for noncommutative four-tori, arXiv:1301.6135.
  10. Levi-Civita T., Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana, Rend. Circ. Mat. Palermo 42 (1917), 172-205.
  11. Rosenberg J., Noncommutative variations on Laplace's equation, Anal. PDE 1 (2008), 95-114, arXiv:0802.4033.

Previous article  Next article   Contents of Volume 9 (2013)