Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 9 (2013), 049, 23 pages      arXiv:1302.6298      http://dx.doi.org/10.3842/SIGMA.2013.049
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa

A Common Structure in PBW Bases of the Nilpotent Subalgebra of $U_q(\mathfrak{g})$ and Quantized Algebra of Functions

Atsuo Kuniba a, Masato Okado b and Yasuhiko Yamada c
a) Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b) Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
c) Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan

Received March 19, 2013, in final form July 10, 2013; Published online July 19, 2013

Abstract
For a finite-dimensional simple Lie algebra $\mathfrak{g}$, let $U^+_q(\mathfrak{g})$ be the positive part of the quantized universal enveloping algebra, and $A_q(\mathfrak{g})$ be the quantized algebra of functions. We show that the transition matrix of the PBW bases of $U^+_q(\mathfrak{g})$ coincides with the intertwiner between the irreducible $A_q(\mathfrak{g})$-modules labeled by two different reduced expressions of the longest element of the Weyl group of $\mathfrak{g}$. This generalizes the earlier result by Sergeev on $A_2$ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for $C_2$. Our proof is based on a realization of $U^+_q(\mathfrak{g})$ in a quotient ring of $A_q(\mathfrak{g})$.

Key words: quantized enveloping algebra; PBW bases; quantized algebra of functions; tetrahedron equation.

pdf (543 kb)   tex (48 kb)

References

  1. Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Quantum geometry of 3-dimensional lattices, J. Stat. Mech. Theory Exp. 2008 (2008), P07004, 27 pages, arXiv:0801.0129.
  2. Bazhanov V.V., Sergeev S.M., Zamolodchikov's tetrahedron equation and hidden structure of quantum groups, J. Phys. A: Math. Gen. 39 (2006), 3295-3310, hep-th/0509181.
  3. Berenstein A., Zelevinsky A., Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128-166.
  4. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  5. Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  6. Geiß C., Leclerc B., Schröer J., Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19 (2013), 337-397, arXiv:1104.0531.
  7. Ip I.C.H., Positive representations of split real quantum groups of type $B_n$, $C_n$, $F_4$, and $G_2$, arXiv:1205.2940.
  8. Isaev A.P., Kulish P.P., Tetrahedron reflection equations, Modern Phys. Lett. A 12 (1997), 427-437, hep-th/9702013.
  9. Joseph A., Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 29, Springer-Verlag, Berlin, 1995.
  10. Kapranov M.M., Voevodsky V.A., 2-categories and Zamolodchikov tetrahedra equations, in Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, Amer. Math. Soc., Providence, RI, 1994, 177-259.
  11. Kashiwara M., Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.
  12. Kuniba A., Okado M., A solution of the 3D reflection equation from quantized algebra of functions of type $B$, arXiv:1210.6430.
  13. Kuniba A., Okado M., Tetrahedron and 3D reflection equations from quantized algebra of functions, J. Phys. A: Math. Theor. 45 (2012), 465206, 27 pages, arXiv:1208.1586.
  14. Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
  15. Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
  16. McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987.
  17. Noumi M., Yamada H., Mimachi K., Finite-dimensional representations of the quantum group ${\rm GL}_q(n;{\bf C})$ and the zonal spherical functions on ${\rm U}_q(n-1)\backslash{\rm U}_q(n)$, Japan. J. Math. 19 (1993), 31-80.
  18. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  19. Sasaki N., Quantization of Lie group and algebra of $G_2$ type in the Faddeev-Reshetikhin-Takhtajan approach, J. Math. Phys. 36 (1995), 4476-4488.
  20. Sergeev S.M., Tetrahedron equations and nilpotent subalgebras of ${\mathcal U}_q({\rm sl}_n)$, Lett. Math. Phys. 83 (2008), 231-235, arXiv:0707.4029.
  21. Soibelman Y.S., Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. 2 (1991), 161-178.
  22. Soibelman Y.S., Selected topics in quantum groups, Internat. J. Modern Phys. A 7 (1992), suppl. 1B, 859-887.
  23. Vaksman L.L., Soibelman Y.S., An algebra of functions on the quantum group SU(2), Funct. Anal. Appl. 22 (1988), 170-181.
  24. Xi N.H., Canonical basis for type $B_2$, J. Algebra 214 (1999), 8-21.
  25. Xi N.H., On the PBW bases of the quantum group $U_v(G_2)$, Algebra Colloq. 2 (1995), 355-362.
  26. Yakimov M., Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. Lond. Math. Soc. (3) 101 (2010), 454-476, arXiv:0905.0852.
  27. Zamolodchikov A.B., Tetrahedra equations and integrable systems in three-dimensional space, Soviet Phys. JETP 52 (1980), 325-336.

Previous article  Next article   Contents of Volume 9 (2013)