|
SIGMA 9 (2013), 049, 23 pages arXiv:1302.6298
https://doi.org/10.3842/SIGMA.2013.049
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions
Atsuo Kuniba a, Masato Okado b and Yasuhiko Yamada c
a) Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b) Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
c) Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan
Received March 19, 2013, in final form July 10, 2013; Published online July 19, 2013
Abstract
For a finite-dimensional simple Lie algebra g,
let U+q(g) be the positive part of
the quantized universal enveloping algebra, and
Aq(g) be the quantized algebra of functions.
We show that the transition matrix of the PBW bases of U+q(g)
coincides with the intertwiner between the irreducible
Aq(g)-modules labeled by two different reduced expressions of the longest element of the
Weyl group of g. This generalizes the earlier result by Sergeev on A2 related to the
tetrahedron equation and endows
a new representation theoretical interpretation with
the recent solution to the 3D reflection equation for C2.
Our proof is based on a realization of U+q(g) in a
quotient ring of Aq(g).
Key words:
quantized enveloping algebra; PBW bases; quantized algebra of functions; tetrahedron equation.
pdf (543 kb)
tex (48 kb)
References
- Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Quantum geometry of
3-dimensional lattices, J. Stat. Mech. Theory Exp. 2008
(2008), P07004, 27 pages, arXiv:0801.0129.
- Bazhanov V.V., Sergeev S.M., Zamolodchikov's tetrahedron equation and hidden
structure of quantum groups, J. Phys. A: Math. Gen. 39
(2006), 3295-3310, hep-th/0509181.
- Berenstein A., Zelevinsky A., Total positivity in Schubert varieties,
Comment. Math. Helv. 72 (1997), 128-166.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
Cambridge, 1994.
- Drinfeld V.G., Quantum groups, in Proceedings of the International Congress
of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math.
Soc., Providence, RI, 1987, 798-820.
- Geiß C., Leclerc B., Schröer J., Cluster structures on quantum coordinate
rings, Selecta Math. (N.S.) 19 (2013), 337-397,
arXiv:1104.0531.
- Ip I.C.H., Positive representations of split real quantum groups of type Bn,
Cn, F4, and G2, arXiv:1205.2940.
- Isaev A.P., Kulish P.P., Tetrahedron reflection equations, Modern Phys.
Lett. A 12 (1997), 427-437, hep-th/9702013.
- Joseph A., Quantum groups and their primitive ideals, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), Vol. 29, Springer-Verlag, Berlin,
1995.
- Kapranov M.M., Voevodsky V.A., 2-categories and Zamolodchikov tetrahedra
equations, in Algebraic Groups and their Generalizations: Quantum and
Infinite-Dimensional Methods (University Park, PA, 1991), Proc.
Sympos. Pure Math., Vol. 56, Amer. Math. Soc., Providence, RI, 1994,
177-259.
- Kashiwara M., Global crystal bases of quantum groups, Duke Math. J.
69 (1993), 455-485.
- Kuniba A., Okado M., A solution of the 3D reflection equation from quantized
algebra of functions of type B, arXiv:1210.6430.
- Kuniba A., Okado M., Tetrahedron and 3D reflection equations from quantized
algebra of functions, J. Phys. A: Math. Theor. 45 (2012),
465206, 27 pages, arXiv:1208.1586.
- Lusztig G., Canonical bases arising from quantized enveloping algebras,
J. Amer. Math. Soc. 3 (1990), 447-498.
- Lusztig G., Introduction to quantum groups, Progress in Mathematics,
Vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
- McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Pure and
Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987.
- Noumi M., Yamada H., Mimachi K., Finite-dimensional representations of the
quantum group GLq(n;C) and the zonal spherical functions on
Uq(n−1)∖Uq(n), Japan. J. Math.
19 (1993), 31-80.
- Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups
and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
- Sasaki N., Quantization of Lie group and algebra of G2 type in the
Faddeev-Reshetikhin-Takhtajan approach, J. Math. Phys.
36 (1995), 4476-4488.
- Sergeev S.M., Tetrahedron equations and nilpotent subalgebras of Uq(sln), Lett. Math. Phys. 83 (2008), 231-235,
arXiv:0707.4029.
- Soibelman Y.S., Algebra of functions on a compact quantum group and its
representations, Leningrad Math. J. 2 (1991), 161-178.
- Soibelman Y.S., Selected topics in quantum groups, Internat. J. Modern
Phys. A 7 (1992), suppl. 1B, 859-887.
- Vaksman L.L., Soibelman Y.S., An algebra of functions on the quantum group
SU(2), Funct. Anal. Appl. 22 (1988), 170-181.
- Xi N.H., Canonical basis for type B2, J. Algebra 214
(1999), 8-21.
- Xi N.H., On the PBW bases of the quantum group Uv(G2), Algebra
Colloq. 2 (1995), 355-362.
- Yakimov M., Invariant prime ideals in quantizations of nilpotent Lie
algebras, Proc. Lond. Math. Soc. (3) 101 (2010), 454-476,
arXiv:0905.0852.
- Zamolodchikov A.B., Tetrahedra equations and integrable systems in
three-dimensional space, Soviet Phys. JETP 52 (1980),
325-336.
|
|