Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 098, 73 pages      arXiv:1210.1485      http://dx.doi.org/10.3842/SIGMA.2012.098
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics

Florian Girelli a, b, Franz Hinterleitner c and Seth A. Major d
a) Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
b) University Erlangen-Nuremberg, Institute for Theoretical Physics III, Erlangen, Germany
c) Department of Theoretical Physics and Astrophysics, Faculty of Science of the Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
d) Department of Physics, Hamilton College, Clinton NY 13323, USA

Received May 30, 2012, in final form December 03, 2012; Published online December 13, 2012

Abstract
Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loop quantum gravity. Particle frameworks, including kinematic models, broken and deformed Poincaré symmetry, non-commutative geometry, relative locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed, as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future. As the discussion makes clear, there remains much interesting work to do in establishing the connection between the fundamental theory of loop quantum gravity and these specific phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted.

Key words: quantum gravity; loop quantum gravity; quantum gravity phenomenology; modified dispersion relation.

pdf (1291 kb)   tex (340 kb)

References

  1. Abbasi R.U. et al. (High Resolution Fly's Eye Collaboration), First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett. 100 (2008), 101101, 5 pages, astro-ph/0703099.
  2. Abdo A.A. et al. (Fermi GBM/LAT Collaborations), A limit on the variation of the speed of light arising from quantum gravity effects, Nature 462 (2009), 331-334.
  3. Abdo A.A. et al. (Fermi GBM/LAT Collaborations), Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323 (2009), 1688-1693, arXiv:0908.1832.
  4. Abraham J. et al. (Auger Collaboration), Correlation of the highest-energy cosmic rays with nearby extragalactic objects, Science 318 (2007), 938-943, arXiv:0711.2256.
  5. Abraham J. et al. (Auger Collaboration), Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger observatory, Astropart. Phys. 29 (2008), 243-256, arXiv:0712.1147.
  6. Agostini A., Amelino-Camelia G., Arzano M., Marcianò A., Tacchi R.A., Generalizing the Noether theorem for Hopf-algebra spacetime symmetries, Modern Phys. Lett. A 22 (2007), 1779-1786, hep-th/0607221.
  7. Agullo I., Observational signatures in LQC?, Talk at International Loop Quantum Gravity Seminar (March 29, 2011), available at http://relativity.phys.lsu.edu/ilqgs/agullo032911.pdf.
  8. Agullo I., Parker L., Non-Gaussianities and the stimulated creation of quanta in the inflationary universe, Phys. Rev. D 83 (2011), 063526, 16 pages, arXiv:1010.5766.
  9. Aharonian F. et al. (HEGRA Collaboration), The Crab Nebula and Pulsar between 500 GeV and 80 TeV: observations with the HEGRA stereoscopic air Cherenkov telescopes, Astrophys. J. 614 (2004), 897-913, astro-ph/0407118.
  10. Alfaro J., Morales-Técotl H.A., Reyes M., Urrutia L.F., Alternative approaches to Lorentz violation invariance in loop quantum gravity inspired models, Phys. Rev. D 70 (2004), 084002, 5 pages, gr-qc/0404113.
  11. Alfaro J., Morales-Técotl H.A., Urrutia L.F., Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000), 2318-2321, gr-qc/9909079.
  12. Alfaro J., Morales-Técotl H.A., Urrutia L.F., Loop quantum gravity and light propagation, Phys. Rev. D 65 (2002), 103509, 18 pages, hep-th/0108061.
  13. Alfaro J., Morales-Técotl H.A., Urrutia L.F., Quantum gravity and spin-1/2 particle effective dynamics, Phys. Rev. D 66 (2002), 124006, 19 pages, hep-th/0208192.
  14. Aloisio R., Galante A., Grillo A., Liberati S., Luzio E., Méndez F., Deformed special relativity as an effective theory of measurements on quantum gravitational backgrounds, Phys. Rev. D 73 (2006), 045020, 11 pages, gr-qc/0511031.
  15. Aloisio R., Galante A., Grillo A.F., Liberati S., Luzio E., Méndez F., Modified special relativity on a fluctuating spacetime, Phys. Rev. D 74 (2006), 085017, 7 pages, gr-qc/0607024.
  16. Amelino-Camelia G., Doubly-special relativity: facts, myths and some key open issues, in Recent Developments in Theoretical Physics, Stat. Sci. Interdiscip. Res., Vol. 9, World Sci. Publ., Hackensack, NJ, 2010, 123-170, arXiv:1003.3942.
  17. Amelino-Camelia G., Particle-dependent deformations of Lorentz symmetry, arXiv:1111.5643.
  18. Amelino-Camelia G., Quantum gravity phenomenology, arXiv:0806.0339.
  19. Amelino-Camelia G., Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale, Internat. J. Modern Phys. D 11 (2002), 35-60, gr-qc/0012051.
  20. Amelino-Camelia G., Briscese F., Gubitosi G., Marcianò A., Martinetti P., Mercati F., Noether analysis of the twisted Hopf symmetries of canonical noncommutative spacetimes, Phys. Rev. D 78 (2008), 025005, 8 pages, arXiv:0709.4600.
  21. Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S., Potential sensitivity of gamma-ray burster observations to wave dispersion in vacuo, Nature 293 (1998), 763-765, astro-ph/9712103.
  22. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., Relative locality: a deepening of the relativity principle, Gen. Relativity Gravitation 43 (2011), 2547-2553, arXiv:1106.0313.
  23. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle of relative locality, Phys. Rev. D 84 (2011), 084010, 13 pages, arXiv:1101.0931.
  24. Amelino-Camelia G., Laemmerzahl C., Mercati F., Tino G.M., Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms, Phys. Rev. Lett. 103 (2009), 171302, 4 pages, arXiv:0911.1020.
  25. Amelino-Camelia G., Loret N., Mandanici G., Mercati F., UV and IR quantum-spacetime effects for the Chandrasekhar model, arXiv:0906.2016.
  26. Amelino-Camelia G., Majid S., Waves on noncommutative space-time and gamma-ray bursts, Internat. J. Modern Phys. A 15 (2000), 4301-4323, hep-th/9907110.
  27. Amelino-Camelia G., Malassa M., Mercati F., Rosati G., Taming nonlocality in theories with Planck-scale deformed Lorentz symmetry, Phys. Rev. Lett. 106 (2011), 071301, 4 pages, arXiv:1006.2126.
  28. Amelino-Camelia G., Mandanici G., Procaccini A., Kowalski-Glikman J., Phenomenology of doubly special relativity, Internat. J. Modern Phys. A 20 (2005), 6007-6037, gr-qc/0312124.
  29. Antonov E.E., Dedenko L.G., Kirillov A.A., Roganova T.M., Fedorova G.F., Fedunin E.Y., Test of Lorentz invariance through observation of the longitudinal development of ultrahigh-energy extensive air showers, JETP Lett. 73 (2001), 446-450.
  30. Arzano M., Benedetti D., Rainbow statistics, Internat. J. Modern Phys. A 24 (2009), 4623-4641, arXiv:0809.0889.
  31. Arzano M., Kowalski-Glikman J., Walkus A., A bound on Planck-scale modifications of the energy-momentum composition rule from atomic interferometry, Europhys. Lett. 90 (2010), 50004, 4 pages, arXiv:0912.2712.
  32. Ashtekar A., Corichi A., Zapata J.A., Quantum theory of geometry. III. Non-commutativity of Riemannian structures, Classical Quantum Gravity 15 (1998), 2955-2972, gr-qc/9806041.
  33. Ashtekar A., Isham C.J., Representations of the holonomy algebras of gravity and nonabelian gauge theories, Classical Quantum Gravity 9 (1992), 1433-1467, hep-th/9202053.
  34. Ashtekar A., Kaminski W., Lewandowski J., Quantum field theory on a cosmological, quantum space-time, Phys. Rev. D 79 (2009), 064030, 12 pages, arXiv:0901.0933.
  35. Ashtekar A., Lewandowski J., Background independent quantum gravity: a status report, Classical Quantum Gravity 21 (2004), R53-R152, gr-qc/0404018.
  36. Ashtekar A., Lewandowski J., Differential geometry on the space of connections via graphs and projective limits, J. Geom. Phys. 17 (1995), 191-230, hep-th/9412073.
  37. Ashtekar A., Lewandowski J., Projective techniques and functional integration for gauge theories, J. Math. Phys. 36 (1995), 2170-2191, gr-qc/9411046.
  38. Ashtekar A., Lewandowski J., Quantum theory of geometry. I. Area operators, Classical Quantum Gravity 14 (1997), A55-A81, gr-qc/9602046.
  39. Ashtekar A., Lewandowski J., Quantum theory of geometry. II. Volume operators, Adv. Theor. Math. Phys. 1 (1997), 388-429, gr-qc/9711031.
  40. Ashtekar A., Singh P., Loop quantum cosmology: a status report, Classical Quantum Gravity 28 (2011), 213001, 122 pages, arXiv:1108.0893.
  41. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., Ultraviolet finite quantum field theory on quantum spacetime, Comm. Math. Phys. 237 (2003), 221-241, hep-th/0301100.
  42. Balachandran A.P., Ibort A., Marmo G., Martone M., Inequivalence of quantum field theories on noncommutative spacetimes: Moyal versus Wick-Voros planes, Phys. Rev. D 81 (2010), 085017, 8 pages, arXiv:0910.4779.
  43. Balachandran A.P., Ibort A., Marmo G., Martone M., Quantum fields on noncommutative spacetimes: theory and phenomenology, SIGMA 6 (2010), 052, 22 pages, arXiv:1003.4356.
  44. Balachandran A.P., Mangano G., Pinzul A., Vaidya S., Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions, Internat. J. Modern Phys. A 21 (2006), 3111-3126, hep-th/0508002.
  45. Balachandran A.P., Pinzul A., Qureshi B.A., UV-IR mixing in non-commutative plane, Phys. Lett. B 634 (2006), 434-436, hep-th/0508151.
  46. Banerjee K., Calcagni G., Martín-Benito M., Introduction to loop quantum cosmology, SIGMA 8 (2012), 016, 73 pages, arXiv:1109.6801.
  47. Barrau A., Cailleteau T., Cao X., Diaz-Polo J., Grain J., Probing loop quantum gravity with evaporating black holes, Phys. Rev. Lett. 107 (2011), 251301, 5 pages, arXiv:1109.4239.
  48. Bethke L., Magueijo J., Chirality of tensor perturbations for complex values of the Immirzi parameter, arXiv:1108.0816.
  49. Bethke L., Magueijo J., Inflationary tensor fluctuations, as viewed by Ashtekar variables and their generalizations, Phys. Rev. D 84 (2011), 024014, 17 pages, arXiv:1104.1800.
  50. Bianchi E., The length operator in loop quantum gravity, Nuclear Phys. B 807 (2009), 591-624, arXiv:0806.4710.
  51. Bianchi E., Doná P., Speziale S., Polyhedra in loop quantum gravity, Phys. Rev. D 83 (2011), 044035, 17 pages, arXiv:1009.3402.
  52. Bianchi E., Haggard H., Discreteness of the volume of space from Bohr-Sommerfeld quantization, Phys. Rev. Lett. 107 (2011), 011301, 4 pages, arXiv:1102.5439.
  53. Bluhm R., Lorentz and CPT tests in matter and antimatter, Nuclear Instrum. Meth. Phys. Res. B 221 (2204), 6-11, hep-ph/0308281.
  54. Bojowald M., Dynamical initial conditions in quantum cosmology, Phys. Rev. Lett. 87 (2001), 121301, 4 pages, gr-qc/0104072.
  55. Bojowald M., Quantum cosmology: a fundamental description of the universe, Lecture Notes in Physics, Vol. 835, Springer, New York, 2011.
  56. Bojowald M., Quantum Riemannian geometry and black holes, in Trends in Quantum Gravity Research, Editor D.C. Moore, Nova Science Publishers, Inc., New York, 2006, 219-260, arXiv:0905.4916.
  57. Bojowald M., Calcagni G., Inflationary observables in loop quantum cosmology, J. Cosmol. Astropart. Phys. 2011 (2011), no. 3, 032, 35 pages, arXiv:1011.2779.
  58. Bojowald M., Calcagni G., Tsujikawa S., Observational test of inflation in loop quantum cosmology, J. Cosmol. Astropart. Phys. 2011 (2011), no. 11, 046, 32 pages, arXiv:1107.1540.
  59. Bojowald M., Hossain G.M., Loop quantum gravity corrections to gravitational wave dispersion, Phys. Rev. D 77 (2008), 023508, 14 pages, arXiv:0709.2365.
  60. Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., Anomaly freedom in perturbative loop quantum gravity, Phys. Rev. D 78 (2008), 063547, 31 pages, arXiv:0806.3929.
  61. Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity, Phys. Rev. D 79 (2009), 043505, 21 pages, arXiv:0811.1572.
  62. Bojowald M., Kagan M., Singh P., Hernández H.H., Skirzewski A., Hamiltonian cosmological perturbation theory with loop quantum gravity corrections, Phys. Rev. D 74 (2006), 123512, 13 pages, gr-qc/0609057.
  63. Bolokhov P.A., Nibbelink S.G., Pospelov M., Lorentz violating supersymmetric quantum electrodynamics, Phys. Rev. D 72 (2005), 103003, 17 pages, hep-ph/0505029.
  64. Borris M., Verch R., Dirac field on Moyal-Minkowski spacetime and non-commutative potential scattering, Comm. Math. Phys. 293 (2010), 399-448, arXiv:0812.0786.
  65. Boulatov D.V., A model of three-dimensional lattice gravity, Modern Phys. Lett. A 7 (1992), 1629-1646, hep-th/9202074.
  66. Brunnemann J., Rideout D., Properties of the volume operator in loop quantum gravity. I. Results, Classical Quantum Gravity 25 (2008), 065001, 32 pages, arXiv:0706.0469.
  67. Brunnemann J., Rideout D., Properties of the volume operator in loop quantum gravity. II. Detailed presentation, Classical Quantum Gravity 25 (2008), 065002, 104 pages, arXiv:0706.0382.
  68. Brunnemann J., Thiemann T., Simplification of the spectral analysis of the volume operator in loop quantum gravity, Classical Quantum Gravity 23 (2006), 1289-1346, gr-qc/0405060.
  69. Bruno N.R., Amelino-Camelia G., Kowalski-Glikman J., Deformed boost transformations that saturate at the Planck scale, Phys. Lett. B 522 (2001), 133-138, hep-th/0107039.
  70. Cailleteau T., Mielczarek J., Barrau A., Grain J., Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, Classical Quantum Gravity 29 (2012), 095010, 17 pages, arXiv:1111.3535.
  71. Calcagni G., Observational effects from quantum cosmology, arXiv:1209.0473.
  72. Calcagni G., Hossain G.M., Loop quantum cosmology and tensor perturbations in the early universe, Adv. Sci. Lett. 2 (2009), 184-193, arXiv:0810.4330.
  73. Camacho A., Some consequences of a generalization to Heisenberg algebra in quantum electrodynamics, Internat. J. Modern Phys. D 12 (2003), 1687-1692, gr-qc/0305052.
  74. Camacho A., White dwarfs as test objects of Lorentz violations, Classical Quantum Gravity 23 (2006), 7355-7368, gr-qc/0610073.
  75. Carlson C.E., Carone C.D., Zobin N., Noncommutative gauge theory without Lorentz violation, Phys. Rev. D 66 (2002), 075001, 8 pages, hep-th/0206035.
  76. Chaichian M., Kulish P.P., Nishijima K., Tureanu A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004), 98-102, hep-th/0408069.
  77. Chaichian M., Presnajder P., Sheikh-Jabbari M.M., Tureanu A., Noncommutative gauge field theories: a no-go theorem, Phys. Lett. B 526 (2002), 132-136, hep-th/0107037.
  78. Christian J., Testing quantum gravity via cosmogenic neutrino oscillations, Phys. Rev. D 71 (2005), 024012, 8 pages, gr-qc/0409077.
  79. Colladay D., Kostelecký A., Lorentz-violating extension of the standard model, Phys. Rev. D 58 (1998), 116002, 23 pages, hep-ph/9809521.
  80. Collins J., Perez A., Sudarsky D., Lorentz invariance violation and its role in quantum gravity phenomenology, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 528-547, hep-th/0603002.
  81. Collins J., Perez A., Sudarsky D., Urrutia L., Vucetich H., Lorentz invariance and quantum gravity: an additional fine-tuning problem?, Phys. Rev. Lett. 93 (2004), 191301, 4 pages, gr-qc/0403053.
  82. Copeland E.J., Mulryne D.J., Nunes N.J., Shaeri M., Gravitational wave background from superinflation in loop quantum cosmology, Phys. Rev. D 79 (2009), 023508, 8 pages, arXiv:0810.0104.
  83. Corichi A., Black holes and entropy in loop quantum gravity: an overview, arXiv:0901.1302.
  84. Dapor A., Lewandowski J., Tavakoli Y., Lorentz symmetry in QFT on quantum Bianchi I space-time, Phys. Rev. D 86 (2012), 064013, 14 pages, arXiv:1207.0671.
  85. De Pietri R., Rovelli C., Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity, Phys. Rev. D 54 (1996), 2664-2690, gr-qc/9602023.
  86. DeWitt B.S., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (1967), 1113-1148.
  87. Dittrich B., Thiemann T., Are the spectra of geometrical operators in loop quantum gravity really discrete?, J. Math. Phys. 50 (2009), 012503, 11 pages, arXiv:0708.1721.
  88. Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, hep-th/0303037.
  89. Dupuis M., Livine E.R., Lifting SU(2) spin networks to projected spin networks, Phys. Rev. D 82 (2010), 064044, 11 pages, arXiv:1008.4093.
  90. Fairbairn W.J., Livine E.R., 3D spinfoam quantum gravity: matter as a phase of the group field theory, Classical Quantum Gravity 24 (2007), 5277-5297, gr-qc/0702125.
  91. Filk T., Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996), 53-58.
  92. Fiore G., Wess J., On full twisted Poincaré symmetry and QFT on Moyal-Weyl spaces, Phys. Rev. D 75 (2007), 105022, 13 pages, hep-th/0701078.
  93. Freidel L., The geometry of momentum space, in preparation.
  94. Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum gravity phase space, arXiv:1110.4833.
  95. Freidel L., Kowalski-Glikman J., κ-Minkowski space, scalar field, and the issue of Lorentz invariance, arXiv:0710.2886.
  96. Freidel L., Kowalski-Glikman J., Nowak S., Field theory on κ-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry, Internat. J. Modern Phys. A 23 (2008), 2687-2718, arXiv:0706.3658.
  97. Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman diagrams and effective field theory, Classical Quantum Gravity 23 (2006), 2021-2061, hep-th/0502106.
  98. Freidel L., Speziale S., Twisted geometries: a geometric parametrisation of SU(2) phase space, Phys. Rev. D 82 (2010), 084040, 16 pages, arXiv:1001.2748.
  99. Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, hep-th/0501191.
  100. Galaverni M., Sigl G., Lorentz violation for photons and ultrahigh-energy cosmic rays, Phys. Rev. Lett. 100 (2008), 021102, 4 pages, arXiv:0708.1737.
  101. Gambini R., Pullin J., Nonstandard optics from quantum space-time, Phys. Rev. D 59 (1999), 124021, 4 pages, gr-qc/9809038.
  102. Gambini R., Pullin J., Rastgoo S., Quantum scalar field in quantum gravity: the propagator and Lorentz invariance in the spherically symmetric case, Gen. Relativity Gravitation 43 (2011), 3569-3592, arXiv:1105.0667.
  103. Gambini R., Rastgoo S., Pullin J., Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?, Classical Quantum Gravity 28 (2011), 155005, 6 pages, arXiv:1106.1417.
  104. Giesel K., Thiemann T., Consistency check on volume and triad operator quantization in loop quantum gravity. I, Classical Quantum Gravity 23 (2006), 5667-5691, gr-qc/0507036.
  105. Giesel K., Thiemann T., Consistency check on volume and triad operator quantization in loop quantum gravity. II, Classical Quantum Gravity 23 (2006), 5693-5771, gr-qc/0507037.
  106. Girelli F., From quantum reference frames to deformed special relativity, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 509-527, gr-qc/0607032.
  107. Girelli F., Snyder space-time: K-loop and Lie triple system, SIGMA 6 (2010), 074, 19 pages, arXiv:1009.4762.
  108. Girelli F., Liberati S., Percacci R., Rahmede C., Modified dispersion relations from the renormalization group of gravity, Classical Quantum Gravity 24 (2007), 3995-4008, gr-qc/0607030.
  109. Girelli F., Liberati S., Sindoni L., Planck-scale modified dispersion relations and Finsler geometry, Phys. Rev. D 75 (2007), 064015, 9 pages, gr-qc/0611024.
  110. Girelli F., Livine E.R., Physics of deformed special relativity: relativity principle revisited, gr-qc/0412004.
  111. Girelli F., Livine E.R., Scalar field theory in Snyder space-time: alternatives, J. High Energy Phys. 2011 (2011), no. 3, 132, 31 pages, arXiv:1004.0621.
  112. Girelli F., Livine E.R., Oriti D., Four-dimensional deformed special relativity from group field theories, Phys. Rev. D 81 (2010), 024015, 14 pages, arXiv:0903.3475.
  113. Girelli F., Poulin D., Quantum reference frames and deformed symmetries, Phys. Rev. D 77 (2008), 104012, 11 pages, arXiv:0710.4393.
  114. Gleiser R.J., Kozameh C.N., Astrophysical limits on quantum gravity motivated birefringence, Phys. Rev. D 64 (2001), 083007, 4 pages, gr-qc/0102093.
  115. Grain J., Barrau A., Cosmological footprints of loop quantum gravity, Phys. Rev. Lett. 102 (2009), 081301, 4 pages, arXiv:0902.0145.
  116. Grain J., Barrau A., Cailleteau T., Mielczarek J., Observing the big bounce with tensor modes in the cosmic microwave background: phenomenology and fundamental loop quantum cosmology parameters, Phys. Rev. D 82 (2010), 123520, 12 pages, arXiv:1011.1811.
  117. Grain J., Cailleteau T., Barrau A., Gorecki A., Fully loop-quantum-cosmology-corrected propagation of gravitational waves during slow-roll inflation, Phys. Rev. D 81 (2010), 024040, 7 pages, arXiv:0910.2892.
  118. Gregg M., Major S.A., On modified dispersion relations and the Chandrasekhar mass limit, Internat. J. Modern Phys. D 18 (2009), 971-982, arXiv:0806.3496.
  119. Groenewold H.J., On the principles of elementary quantum mechanics, Physica 12 (1946), 405-460.
  120. Groot Nibbelink S., Pospelov M., Lorentz violation in supersymmetric field theories, Phys. Rev. Lett. 94 (2005), 081601, 4 pages, hep-ph/0404271.
  121. Grosse H., Wohlgenannt M., On κ-deformation and UV/IR mixing, Nuclear Phys. B 748 (2006), 473-484, hep-th/0507030.
  122. Grosse H., Wulkenhaar R., Progress in solving a noncommutative quantum field theory in four dimensions, arXiv:0909.1389.
  123. Grot N., Rovelli C., Moduli-space structure of knots with intersections, J. Math. Phys. 37 (1996), 3014-3021, gr-qc/9604010.
  124. Gubitosi G., Genovese G., Amelino-Camelia G., Melchiorri A., Planck-scale modifications to electrodynamics characterized by a spacelike symmetry-breaking vector, Phys. Rev. D 82 (2010), 024013, 8 pages, arXiv:1003.0878.
  125. Gubitosi G., Mercati F., Relative locality in κ-Poincaré, arXiv:1106.5710.
  126. Gurau R., Magnen J., Rivasseau V., Tanasa A., A translation-invariant renormalizable non-commutative scalar model, Comm. Math. Phys. 287 (2009), 275-290, arXiv:0802.0791.
  127. Heisenberg W., Über die in der Theorie der Elementarteilchen auftretende universelle Länge, Ann. Phys. 424 (1938), 20-33.
  128. Heyman D., Major S.A., Hinteleitner F., Reaction thresholds in doubly special relativity, Phys. Rev. D 69 (2004), 105016, 8 pages, gr-qc/0312089.
  129. Hinchliffe I., Kersting N., Ma Y.L., Review of the phenomenology of noncommutative geometry, Internat. J. Modern Phys. A 19 (2004), 179-204, hep-ph/0205040.
  130. Hinterleitner F., Remarks on doubly special relativity theories and gravity, Classical Quantum Gravity 25 (2008), 075018, 11 pages, arXiv:0706.0471.
  131. Hossenfelder S., A note on theories with a minimal length, Classical Quantum Gravity 23 (2006), 1815-1821, hep-th/0510245.
  132. Hossenfelder S., Bounds on an energy-dependent and observer-independent speed of light from violations of locality, Phys. Rev. Lett. 104 (2010), 071301, 4 pages, arXiv:1004.0418.
  133. Hossenfelder S., Interpretation of quantum field theories with a minimal length scale, Phys. Rev. D 73 (2006), 105013, 9 pages, hep-th/0603032.
  134. Hossenfelder S., Minimal length scale scenarios for quantum gravity, arXiv:1203.6191.
  135. Hossenfelder S., The box-problem in deformed special relativity, arXiv:0912.0090.
  136. Hossenfelder S., Modesto L., Prémont-Schwarz I., Emission spectra of self-dual black holes, arXiv:1202.0412.
  137. Husain V., Major S.A., Gravity and BF theory defined in bounded regions, Nuclear Phys. B 500 (1997), 381-401, gr-qc/9703043.
  138. Jacob U., Mercati F., Amelino-Camelia G., Piran T., Modifications to Lorentz invariant dispersion in relatively boosted frames, Phys. Rev. D 82 (2010), 084021, 11 pages, arXiv:1004.0575.
  139. Jacobson T., Liberati S., Mattingly D., Astrophysical bounds on Planck suppressed Lorentz violation, in Planck Scale Efffects in Astrophysics and Cosmology, Lecture Notes in Phys., Vol. 669, Springer, Berlin, 2005, 101-130, hep-ph/0407370.
  140. Jacobson T., Liberati S., Mattingly D., Threshold effects and Planck scale Lorentz violation: combined constraints from high energy astrophysics, Phys. Rev. D 67 (2003), 124011, 26 pages, hep-ph/0209264.
  141. Jacobson T., Liberati S., Mattingly D., Lorentz violation at high energy: concepts, phenomena and astrophysical constraints, Ann. Physics 321 (2006), 150-196, astro-ph/0505267.
  142. Jacobson T., Liberati S., Mattingly D., Stecker F.W., New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93 (2004), 021101, 4 pages, astro-ph/0309681.
  143. Joung E., Mourad J., Noui K., Three dimensional quantum geometry and deformed symmetry, J. Math. Phys. 50 (2009), 052503, 29 pages, arXiv:0806.4121.
  144. Jurco B., Schraml S., Schupp P., Wess J., Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces, Eur. Phys. J. C 17 (2000), 521-526, hep-th/0006246.
  145. Kelley J.L., Searching for quantum gravity with neutrino telescopes, PoS Proc. Sci. (2007), PoS(QG-Ph), 022, 14 pages.
  146. Kempf A., Mangano G., Mann R.B., Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995), 1108-1118, hep-th/9412167.
  147. Kodama H., Holomorphic wave function of the Universe, Phys. Rev. D 42 (1990), 2548-2565.
  148. Kodama H., Specialization of Ashtekar's formalism to Bianchi cosmology, Progr. Theoret. Phys. 80 (1988), 1024-1040.
  149. Konopka T., Major S.A., Observational limits on quantum geometry effects, New J. Phys. 4 (2002), 57, 18 pages, hep-ph/0201184.
  150. Kostelecký A. (Editor), Proceedings of the Second Meeting on CPT and Lorentz Symmetry, World Scientific Publishing Co. Inc., River Edge, NJ, 2002.
  151. Kostelecký A., Mewes M., Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 80 (2009), 015020, 59 pages, arXiv:0905.0031.
  152. Kostelecký A., Russell N., Data tables for Lorentz and CPT violation, Rev. Modern Phys. 83 (2011), 11-31, arXiv:0801.0287.
  153. Kowalski-Glikman J., Doubly special relativity: facts and prospects, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 493-508, gr-qc/0603022.
  154. Kowalski-Glikman J., Planck-scale relativity from quantum κ-Poincaré algebra, Modern Phys. Lett. A 17 (2002), 1-12, hep-th/0107054.
  155. Kowalski-Glikman J., Nowak S., Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539 (2002), 126-132, hep-th/0203040.
  156. Kowalski-Glikman J., Starodubtsev A., Effective particle kinematics from quantum gravity, Phys. Rev. D 78 (2008), 084039, 10 pages, arXiv:0808.2613.
  157. Kozameh C.N., Parisi F., Lorentz invariance and the semiclassical approximation of loop quantum gravity, Classical Quantum Gravity 21 (2004), 2617-2621, gr-qc/0310014.
  158. Krasnov K., Geometrical entropy from loop quantum gravity, Phys. Rev. D 55 (1997), 3505-3513.
  159. Krasnov K., The area spectrum in quantum gravity, Classical Quantum Gravity 15 (1998), L47-L53, gr-qc/9803074.
  160. Krasnov K., Rovelli C., Black holes in full quantum gravity, Classical Quantum Gravity 26 (2009), 245009, 8 pages, arXiv:0905.4916.
  161. Laurent P., Götz D., Binétruy P., Covino S., Fernandez-Soto A., Constraints on Lorentz invariance violation using integral/IBIS observations of GRB041219A, Phys. Rev. D 83 (2011), 121301, 5 pages, arXiv:1106.1068.
  162. Lewandowski J., Volume and quantizations, Classical Quantum Gravity 14 (1997), 71-76, gr-qc/9602035.
  163. Liberati S., Maccione L., Lorentz violation: motivation and new constraints, Ann. Rev. Nuclear Part. Sci. 59 (2009), 245-267, arXiv:0906.0681.
  164. Liberati S., Maccione L., Quantum gravity phenomenology: achievements and challenges, J. Phys. Conf. Ser. 314 (2011), 012007, 10 pages, arXiv:1105.6234.
  165. Liberati S., Sonego S., Visser M., Interpreting doubly special relativity as a modified theory of measurement, Phys. Rev. D 71 (2005), 045001, 9 pages, gr-qc/0410113.
  166. Livine E.R., Boucles et mousses de spin en gravite quantique: une approche covariante à la quantification non-perturbative de la relativité générale, Ph.D. thesis, Centre de Physique Theorique, 2003.
  167. Livine E.R., Oriti D., About Lorentz invariance in a discrete quantum setting, J. High Energy Phys. 2004 (2004), no. 6, 050, 36 pages, gr-qc/0405085.
  168. Loll R., Spectrum of the volume operator in quantum gravity, Nuclear Phys. B 460 (1996), 143-154, gr-qc/9511030.
  169. Loll R., Volume operator in discretized quantum gravity, Phys. Rev. Lett. 75 (1995), 3048-3051, gr-qc/9506014.
  170. Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., q-deformation of Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
  171. Ma Y., Soo C., Yang J., New length operator for loop quantum gravity, Phys. Rev. D 81 (2010), 124026, 9 pages, arXiv:1004.1063.
  172. Maccione L., Liberati S., Celotti A., Kirk J.G., New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula, J. Cosmol. Astropart. Phys. 2007 (2007), no. 10, 013, 24 pages, arXiv:0707.2673.
  173. Maccione L., Liberati S., Celotti A., Kirk J.G., Ubertini P., γ-ray polarization constraints on Planck scale violations of special relativity, Phys. Rev. D 78 (2008), 103003, 5 pages, arXiv:0809.0220.
  174. Maccione L., Taylor A.M., Mattingly D., Liberati S., Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays, J. Cosmol. Astropart. Phys. 2009 (2009), no. 4, 022, 21 pages, arXiv:0902.1756.
  175. Maggiore M., Quantum groups, gravity, and the generalized uncertainty principle, Phys. Rev. D 49 (1994), 5182-5187, hep-th/9305163.
  176. Maggiore M., The algebraic structure of the generalized uncertainty principle, Phys. Lett. B 319 (1993), 83-86, hep-th/9309034.
  177. Magueijo J., Benincasa D.M.T., Chiral vacuum fluctuations in quantum gravity, Phys. Rev. Lett. 106 (2011), 121302, 4 pages, arXiv:1010.3552.
  178. Magueijo J., Bethke L., New ground state for quantum gravity, arXiv:1207.0637.
  179. Magueijo J., Smolin L., Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67 (2003), 044017, 12 pages, gr-qc/0207085.
  180. Magueijo J., Smolin L., Gravity's rainbow, Classical Quantum Gravity 21 (2004), 1725-1736, gr-qc/0305055.
  181. Magueijo J., Smolin L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002), 190403, 4 pages, hep-th/0112090.
  182. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  183. Majid S., On q-regularization, Internat. J. Modern Phys. A 5 (1990), 4689-4696.
  184. Majid S., Ruegg H., Bicrossproduct structure of κ-Poincaré group and non-commutative geometry, Phys. Lett. B 334 (1994), 348-354, hep-th/9405107.
  185. Major S.A., Embedded graph invariants in Chern-Simons theory, Nuclear Phys. B 550 (1999), 531-560, hep-th/9810071.
  186. Major S.A., On the q-quantum gravity loop algebra, Classical Quantum Gravity 25 (2008), 065003, 9 pages, arXiv:0708.0750.
  187. Major S.A., Operators for quantized directions, Classical Quantum Gravity 16 (1999), 3859-3877, gr-qc/9905019.
  188. Major S.A., q-quantum gravity, Ph.D. thesis, The Pennsylvania State University, 1997.
  189. Major S.A., Quantum geometry phenomenology: angle and semiclassical states, J. Phys. Conf. Ser. 360 (2012), 012061, 4 pages, arXiv:1112.4366.
  190. Major S.A., Shape in an atom of space: exploring quantum geometry phenomenology, Classical Quantum Gravity 27 (2010), 225012, 16 pages, arXiv:1005.5460.
  191. Major S.A., Seifert M.D., Modelling space with an atom of quantum geometry, Classical Quantum Gravity 19 (2002), 2211-2227, gr-qc/0109056.
  192. Major S.A., Smolin L., Quantum deformation of quantum gravity, Nuclear Phys. B 473 (1996), 267-290, gr-qc/9512020.
  193. Mattingly D., Have we tested Lorentz invariance enough?, arXiv:0802.1561.
  194. Mattingly D., Modern tests of Lorentz invariance, Living Rev. Relativity 8 (2005), 5, 84 pages, gr-qc/0502097.
  195. Mattingly D.M., Maccione L., Galaverni M., Liberati S., Sigl G., Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation, J. Cosmol. Astropart. Phys. 2010 (2010), no. 2, 007, 20 pages, arXiv:0911.0521.
  196. Matusis A., Susskind L., Toumbas N., The IR/UV connection in the noncommutative gauge theories, J. High Energy Phys. 2000 (2000), no. 12, 002, 18 pages, hep-th/0002075.
  197. Meissner K.A., Black-hole entropy in loop quantum gravity, Classical Quantum Gravity 21 (2004), 5245-5251, gr-qc/0407052.
  198. Meissner K.A., Eigenvalues of the volume operator in loop quantum gravity, Classical Quantum Gravity 23 (2006), 617-625, gr-qc/0509049.
  199. Meusburger C., Schroers B.J., Generalised Chern-Simons actions for 3d gravity and κ-Poincaré symmetry, Nuclear Phys. B 806 (2009), 462-488, arXiv:0805.3318.
  200. Mielczarek J., Gravitational waves from the big bounce, J. Cosmol. Astropart. Phys. 2008 (2008), no. 11, 011, 17 pages, arXiv:0807.0712.
  201. Mielczarek J., Possible observational effects of loop quantum cosmology, Phys. Rev. D 81 (2010), 063503, 12 pages, arXiv:0908.4329.
  202. Mielczarek J., Tensor power spectrum with holonomy corrections in LQC, Phys. Rev. D 79 (2009), 123520, 13 pages, arXiv:0902.2490.
  203. Mielczarek J., Cailleteau T., Barrau A., Grain J., Anomaly-free vector perturbations with holonomy corrections in loop quantum cosmology, arXiv:1106.3744.
  204. Mielczarek J., Cailleteau T., Grain J., Barrau A., Inflation in loop quantum cosmology: dynamics and spectrum of gravitational waves, Phys. Rev. D 81 (2010), 104049, 11 pages, arXiv:1003.4660.
  205. Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020, 31 pages, hep-th/9912072.
  206. Modesto L., Prémont-Schwarz I., Self-dual black holes in LQG: theory and phenomenology, Phys. Rev. D 80 (2009), 064041, 17 pages, arXiv:0905.3170.
  207. Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124.
  208. Myers R.C., Pospelov M., Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90 (2003), 211601, 4 pages, hep-ph/0301124.
  209. Oeckl R., Braided quantum field theory, Comm. Math. Phys. 217 (2001), 451-473, hep-th/9906225.
  210. Oeckl R., Untwisting noncommutative Rd and the equivalence of quantum field theories, Nuclear Phys. B 581 (2000), 559-574, hep-th/0003018.
  211. Percival I.C., Strunz W.T., Detection of spacetime fluctuations by a model interferometer, Proc. Roy. Soc. London. Ser. A 453 (1997), 431-446, quant-ph/9607011.
  212. Perez A., Introduction to loop quantum gravity and spin foams, gr-qc/0409061.
  213. Pfeifer C., Wohlfarth M.N.R., Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011), 044039, 14 pages, arXiv:1104.1079.
  214. Pinzul A., Twisted Poincaré group and spin-statistics, Internat. J. Modern Phys. A 20 (2005), 6268-6277.
  215. Podles P., Woronowicz S.L., On the classification of quantum Poincaré groups, Comm. Math. Phys. 178 (1996), 61-82, hep-th/9412059.
  216. Polchinski J., Comment on "Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?", arXiv:1106.6346.
  217. Poulin D., Yard J., Dynamics of a quantum reference frame, New J. Phys. 9 (2007), no. 5, 156, 17 pages, quant-ph/0612126.
  218. Randono A.C., In search of quantum de Sitter space: generalizing the Kodama state, Ph.D. thesis, University of Texas at Austin, 2007, arXiv:0709.2905.
  219. Rätzel D., Rivera S., Schuller F.P., Geometry of physical dispersion relations, Phys. Rev. D 83 (2011), 044047, 23 pages, arXiv:1010.1369.
  220. Rodríguez-Romo S., Some examples of q-regularization, Internat. J. Theoret. Phys. 34 (1995), 2179-2193, hep-th/9508019.
  221. Roth M. et al. (Auger Collaboration), Measurement of the UHECR energy spectrum using data from the surface detector of the Pierre Auger observatory, arXiv:0706.2096.
  222. Rovelli C., A generally covariant quantum field theory and a prediction on quantum measurements of geometry, Nuclear Phys. B 405 (1993), 797-815.
  223. Rovelli C., A new look at loop quantum gravity, Classical Quantum Gravity 28 (2011), 114005, 24 pages, arXiv:1004.1780.
  224. Rovelli C., Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 77 (1996), 3288-3291, gr-qc/9603063.
  225. Rovelli C., Comment on "Are the spectra of geometrical operators in loop quantum gravity really discrete?" by B. Dittrich and T. Thiemann, arXiv:0708.2481.
  226. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
  227. Rovelli C., Zakopane lectures on loop gravity, arXiv:1102.3660.
  228. Rovelli C., Smolin L., Discreteness of area and volume in quantum gravity, Nuclear Phys. B 442 (1995), 593-619, Erratum, Nuclear Phys. B 456 (1995), 753-754, gr-qc/9411005.
  229. Rovelli C., Speziale S., Lorentz covariance of loop quantum gravity, Phys. Rev. D 83 (2011), 104029, 6 pages, arXiv:1012.1739.
  230. Rovelli C., Speziale S., Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction, Phys. Rev. D 67 (2003), 064019, 11 pages, gr-qc/0205108.
  231. Rubtsov G.I. et al., Upper limit on the ultrahigh-energy photon flux from AGASA and Yakutsk data, Phys. Rev. D 73 (2006), 063009, 8 pages, astro-ph/0601449.
  232. Sahlmann H., Loop quantum gravity - a short review, arXiv:1001.4188.
  233. Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR. I. A general scheme, Classical Quantum Gravity 23 (2006), 867-908, gr-qc/0207030.
  234. Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR. II. A concrete implementation, Classical Quantum Gravity 23 (2006), 909-954, gr-qc/0207031.
  235. Sakellariadou M., Lattice refinement in loop quantum cosmology, J. Phys. Conf. Ser. 189 (2009), 012035, 17 pages, arXiv:0810.5356.
  236. Sakellariadou M., Phenomenology of loop quantum cosmology, J. Phys. Conf. Ser. 222 (2010), 012027, 16 pages, arXiv:1001.0161.
  237. Saveliev A., Maccione L., Sigl G., Lorentz invariance violation and chemical composition of ultra high energy cosmic rays, J. Cosmol. Astropart. Phys. 2011 (2011), no. 3, 046, 18 pages, arXiv:1101.2903.
  238. Schuller F.P., All spacetimes beyond Einstein (Obergurgl lectures), arXiv:1111.4824.
  239. Seifert M., Angle and volume studies in quantized space, B.A. Thesis, Swarthmore College, Swarthmore, 2001, gr-qc/0108047.
  240. Sheikh-Jabbari M.M., Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus, J. High Energy Phys. 1999 (1999), no. 6, 015, 16 pages, hep-th/9903107.
  241. Sitarz A., Noncommutative differential calculus on the κ-Minkowski space, Phys. Lett. B 349 (1995), 42-48, hep-th/9409014.
  242. Skákala J., Visser M., Pseudo-Finslerian space-times and multirefringence, Internat. J. Modern Phys. D 19 (2010), 1119-1146, arXiv:0806.0950.
  243. Smolin L., Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity, Gen. Relativity Gravitation 43 (2011), 3671-3691, arXiv:1004.0664.
  244. Smolin L., Could deformed special relativity naturally arise from the semiclassical limit of quantum gravity?, arXiv:0808.3765.
  245. Smolin L., Falsifiable predictions from semiclassical quantum gravity, Nuclear Phys. B 742 (2006), 142-157, hep-th/0501091.
  246. Smolin L., On limitations of the extent of inertial frames in non-commutative spacetimes, arXiv:1007.0718.
  247. Smolin L., Quantum gravity with a positive cosmological constant, hep-th/0209079.
  248. Smolin L., Soo C., The Chern-Simons invariant as the natural time variable for classical and quantum cosmology, Nuclear Phys. B 449 (1995), 289-314, gr-qc/9405015.
  249. Smolin L., Starodubtsev A., General relativity with a topological phase: an action principle, hep-th/0311163.
  250. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
  251. Starodubtsev A., Topological excitations around the vacuum of quantum gravity I: The symmetries of the vacuum, hep-th/0306135.
  252. Stecker F.W., A new limit on Planck scale Lorentz violation from γ-ray burst polarization, Astropart. Phys. 35 (2011), 95-97, arXiv:1102.2784.
  253. Thiemann T., A length operator for canonical quantum gravity, J. Math. Phys. 39 (1998), 3372-3392, gr-qc/9606092.
  254. Thiemann T., Closed formula for the matrix elements of the volume operator in canonical quantum gravity, J. Math. Phys. 39 (1998), 3347-3371, gr-qc/9606091.
  255. Thiemann T., Lectures on loop quantum gravity, in Quantum Gravity, Lecture Notes in Phys., Vol. 631, Springer, Berlin, 2003, 41-135, gr-qc/0210094.
  256. Thiemann T., Loop quantum gravity: an inside view, in Approaches to Fundamental Physics, Lecture Notes in Phys., Vol. 721, Springer, Berlin, 2007, 185-263, hep-th/0608210.
  257. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  258. Thiemann T., Quantum spin dynamics (QSD), Classical Quantum Gravity 15 (1998), 839-873, gr-qc/9606089.
  259. Ungar A.A., Thomas precession and its associated grouplike structure, Amer. J. Phys. 59 (1991), 824-834.
  260. Wang C.H.T., Bingham R., Mendonça J.T., Quantum gravitational decoherence of matter waves, Classical Quantum Gravity 23 (2006), L59-L65, gr-qc/0603112.
  261. Wilson-Ewing E., Holonomy corrections in the effective equations for scalar mode perturbations in loop quantum cosmology, Classical Quantum Gravity 29 (2012), 085005, 19 pages, arXiv:1108.6265.
  262. Wu J., Ling Y., The cosmological perturbation theory in loop cosmology with holonomy corrections, J. Cosmol. Astropart. Phys. 2010 (2010), no. 5, 026, 15 pages, arXiv:1001.1227.
  263. Yonetoku D. et al., Detection of gamma-ray polarization in prompt emission of GRB 100826A, Astrophys. J. Lett. 743 (2011), L30-L34, arXiv:1111.1779.
  264. Young C.A.S., Zegers R., Covariant particle statistics and intertwiners of the κ-deformed Poincaré algebra, Nuclear Phys. B 797 (2008), 537-549, arXiv:0711.2206.
  265. Young C.A.S., Zegers R., On κ-deformation and triangular quasibialgebra structure, Nuclear Phys. B 809 (2009), 439-451, arXiv:0807.2745.
  266. Zapata J.A., A combinatorial approach to diffeomorphism invariant quantum gauge theories, J. Math. Phys. 38 (1997), 5663-5681, gr-qc/9703037.
  267. Zapata J.A., Combinatorial space from loop quantum gravity, Gen. Relativity Gravitation 30 (1998), 1229-1245, gr-qc/9703038.

Previous article  Next article   Contents of Volume 8 (2012)