Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 077, 10 pages      arXiv:1210.0041      http://dx.doi.org/10.3842/SIGMA.2012.077
Contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”

Definite Integrals using Orthogonality and Integral Transforms

Howard S. Cohl a and Hans Volkmer b
a) Applied and Computational Mathematics Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
b) Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI, 53201, USA

Received July 31, 2012, in final form October 15, 2012; Published online October 19, 2012

Abstract
We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.

Key words: definite integrals; associated Legendre functions; Bessel functions; Chebyshev polynomials of the first kind.

pdf (328 kb)   tex (14 kb)

References

  1. Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
  2. Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975.
  3. Cohl H.S., Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems, arXiv:1209.6047.
  4. Cohl H.S., Erratum: Developments in determining the gravitational potential using toroidal functions, Astronom. Nachr. 333 (2012), 784-785.
  5. Cohl H.S., Dominici D.E., Generalized Heine's identity for complex Fourier series of binomials, Proc. R. Soc. Lond. Ser. A 467 (2011), 333-345, arXiv:0912.0126.
  6. Cohl H.S., Tohline J.E., Rau A.R.P., Srivastava H.M., Developments in determining the gravitational potential using toroidal functions, Astronom. Nachr. 321 (2000), 363-372.
  7. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, 2007.
  8. Hardy G.H., Further researches in the theory of divergent series and integrals, Trans. Cambridge Philos. Soc. 21 (1908), 1-48.
  9. MacRobert T.M., Spherical harmonics. An elementary treatise on harmonic functions with applications, 2nd ed., Methuen & Co. Ltd., London, 1947.
  10. Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special functions of mathematical physics, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Bd. 52, Springer-Verlag, New York, 1966.
  11. Morse P.M., Feshbach H., Methods of theoretical physics, Vols. 1, 2, McGraw-Hill Book Co. Inc., New York, 1953.
  12. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
  13. Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and series. Vol. 3. More special functions, Gordon and Breach Science Publishers, New York, 1990.
  14. Schäfke F.W., Einführung in die Theorie der speziellen Funktionen der mathematischen Physik, Die Grundlehren der mathematischen Wissenschaften, Bd. 118, Springer-Verlag, Berlin, 1963.
  15. Watson G.N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1944.

Previous article  Next article   Contents of Volume 8 (2012)