Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 052, 31 pages      arXiv:1204.5394      http://dx.doi.org/10.3842/SIGMA.2012.052
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Discrete Gravity Models and Loop Quantum Gravity: a Short Review

Maïté Dupuis a, James P. Ryan b and Simone Speziale c
a) Institute for Theoretical Physics III, University of Erlangen-Nürnberg, Erlangen, Germany
b) MPI für Gravitationsphysik, Am Mühlenberg 1, D-14476 Potsdam, Germany
c) Centre de Physique Théorique, CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France

Received April 25, 2012, in final form August 06, 2012; Published online August 13, 2012

Abstract
We review the relation between Loop Quantum Gravity on a fixed graph and discrete models of gravity. We compare Regge and twisted geometries, and discuss discrete actions based on twisted geometries and on the discretization of the Plebanski action. We discuss the role of discrete geometries in the spin foam formalism, with particular attention to the definition of the simplicity constraints.

Key words: Loop Quantum Gravity; discrete gravity; Regge calculus; simplicity constraints; twisted geometries.

pdf (642 kb)   tex (201 kb)

References

  1. Alesci E., Rovelli C., Complete LQG propagator: difficulties with the Barrett-Crane vertex, Phys. Rev. D 76 (2007), 104012, 22 pages, arXiv:0708.0883.
  2. Alesci E., Rovelli C., Complete LQG propagator. II. Asymptotic behavior of the vertex, Phys. Rev. D 77 (2008), 044024, 11 pages, arXiv:0711.1284.
  3. Alexandrov S., Degenerate Plebanski sector and its spin foam quantization, arXiv:1202.5039.
  4. Alexandrov S., New vertices and canonical quantization, Phys. Rev. D 82 (2010), 024024, 9 pages, arXiv:1004.2260.
  5. Alexandrov S., SO(4,C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter, Classical Quantum Gravity 17 (2000), 4255-4268, gr-qc/0005085.
  6. Alexandrov S., The Immirzi parameter and fermions with non-minimal coupling, Classical Quantum Gravity 25 (2008), 145012, 4 pages, arXiv:0802.1221.
  7. Alexandrov S., Buffenoir E., Roche P., Plebanski theory and covariant canonical formulation, Classical Quantum Gravity 24 (2007), 2809-2824, gr-qc/0612071.
  8. Alexandrov S., Geiller M., Noui K., Spin foams and canonical quantization, arXiv:1112.1961.
  9. Alexandrov S., Livine E.R., SU(2) loop quantum gravity seen from covariant theory, Phys. Rev. D 67 (2003), 044009, 15 pages, gr-qc/0209105.
  10. Ambjorn J., Jurkiewicz J., Loll R., Lattice quantum gravity - an update, PoS Proc. Sci. (2010), PoS(LATTICE2010), 014, 14 pages, arXiv:1105.5582.
  11. Ashtekar A., Corichi A., Zapata J.A., Quantum theory of geometry. III. Non-commutativity of Riemannian structures, Classical Quantum Gravity 15 (1998), 2955-2972, gr-qc/9806041.
  12. Ashtekar A., Lewandowski J., Background independent quantum gravity: a status report, Classical Quantum Gravity 21 (2004), R53-R152, gr-qc/0404018.
  13. Baez J.C., Barrett J.W., The quantum tetrahedron in 3 and 4 dimensions, Adv. Theor. Math. Phys. 3 (1999), 815-850, gr-qc/9903060.
  14. Bahr B., Dittrich B., (Broken) gauge symmetries and constraints in Regge calculus, Classical Quantum Gravity 26 (2009), 225011, 34 pages, arXiv:0905.1670.
  15. Bahr B., Dittrich B., Improved and perfect actions in discrete gravity, Phys. Rev. D 80 (2009), 124030, 15 pages, arXiv:0907.4323.
  16. Bahr B., Dittrich B., He S., Coarse graining free theories with gauge symmetries: the linearized case, New J. Phys. 13 (2011), 045009, 34 pages, arXiv:1011.3667.
  17. Baratin A., Dittrich B., Oriti D., Tambornino J., Non-commutative flux representation for loop quantum gravity, Classical Quantum Gravity 28 (2011), 175011, 19 pages, arXiv:1004.3450.
  18. Baratin A., Oriti D., Group field theory and simplicial gravity path integrals: a model for Holst-Plebanski gravity, Phys. Rev. D 85 (2012), 044003, 15 pages, arXiv:1111.5842.
  19. Baratin A., Oriti D., Group field theory with noncommutative metric variables, Phys. Rev. Lett. 105 (2010), 221302, 4 pages, arXiv:1002.4723.
  20. Barbero G. J.F., Real Ashtekar variables for Lorentzian signature space-times, Phys. Rev. D 51 (1995), 5507-5510, gr-qc/9410014.
  21. Barrett J.W., Crane L., A Lorentzian signature model for quantum general relativity, Classical Quantum Gravity 17 (2000), 3101-3118, gr-qc/9904025.
  22. Barrett J.W., Crane L., Relativistic spin networks and quantum gravity, J. Math. Phys. 39 (1998), 3296-3302, gr-qc/9709028.
  23. Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R., Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Classical Quantum Gravity 27 (2010), 165009, 34 pages, arXiv:0907.2440.
  24. Barrett J.W., Rocek M., Williams R.M., A note on area variables in Regge calculus, Classical Quantum Gravity 16 (1999), 1373-1376, gr-qc/9710056.
  25. Benedetti D., Speziale S., Perturbative quantum gravity with the Immirzi parameter, J. High Energy Phys. 2011 (2011), no. 6, 107, 31 pages, arXiv:1104.4028.
  26. Benedetti D., Speziale S., Perturbative running of the Immirzi parameter, arXiv:1111.0884.
  27. Bianchi E., Black hole entropy, loop gravity, and polymer physics, Classical Quantum Gravity 28 (2011), 114006, 12 pages, arXiv:1011.5628.
  28. Bianchi E., Loop quantum gravity a la Aharonov-Bohm, arXiv:0907.4388.
  29. Bianchi E., Doná P., Speziale S., Polyhedra in loop quantum gravity, Phys. Rev. D 83 (2011), 044035, 17 pages, arXiv:1009.3402.
  30. Bianchi E., Krajewski T., Rovelli C., Vidotto F., Cosmological constant in spinfoam cosmology, Phys. Rev. D 83 (2011), 104015, 4 pages, arXiv:1101.4049.
  31. Bianchi E., Magliaro E., Perini C., LQG propagator from the new spin foams, Nuclear Phys. B 822 (2009), 245-269, arXiv:0905.4082.
  32. Bianchi E., Modesto L., Rovelli C., Speziale S., Graviton propagator in loop quantum gravity, Classical Quantum Gravity 23 (2006), 6989-7028, gr-qc/0604044.
  33. Bonzom V., Spin foam models and the Wheeler-DeWitt equation for the quantum 4-simplex, Phys. Rev. D 84 (2011), 024009, 13 pages, arXiv:1101.1615.
  34. Bonzom V., Spin foam models for quantum gravity from lattice path integrals, Phys. Rev. D 80 (2009), 064028, 15 pages, arXiv:0905.1501.
  35. Bonzom V., Freidel L., The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Classical Quantum Gravity 28 (2011), 195006, 24 pages, arXiv:1101.3524.
  36. Bonzom V., Livine E.R., A new Hamiltonian for the topological BF phase with spinor networks, arXiv:1110.3272.
  37. Bonzom V., Livine E.R., Lagrangian approach to the Barrett-Crane spin foam model, Phys. Rev. D 79 (2009), 064034, 23 pages, arXiv:0812.3456.
  38. Bonzom V., Livine E.R., Speziale S., Recurrence relations for spin foam vertices, Classical Quantum Gravity 27 (2010), 125002, 32 pages, arXiv:0911.2204.
  39. Borja E.F., Díaz-Polo J., Freidel L., Garay I., Livine E.R., New tools for loop quantum gravity with applications to a simple model, arXiv:1201.5470.
  40. Borja E.F., Díaz-Polo J., Garay I., U(N) and holomorphic methods for LQG and spin foams, arXiv:1110.4578.
  41. Borja E.F., Díaz-Polo J., Garay I., Livine E.R., Dynamics for a 2-vertex quantum gravity model, Classical Quantum Gravity 27 (2010), 235010, 34 pages, arXiv:1006.2451.
  42. Borja E.F., Freidel L., Garay I., Livine E.R., U(N) tools for loop quantum gravity: the return of the spinor, Classical Quantum Gravity 28 (2011), 055005, 28 pages, arXiv:1010.5451.
  43. Brewin L.C., Gentle A.P., On the convergence of Regge calculus to general relativity, Classical Quantum Gravity 18 (2001), 517-525, gr-qc/0006017.
  44. Buffenoir E., Henneaux M., Noui K., Roche P., Hamiltonian analysis of Plebanski theory, Classical Quantum Gravity 21 (2004), 5203-5220, gr-qc/0404041.
  45. Carfora M., Dappiaggi C., Marzuoli A., The modular geometry of random Regge triangulations, Classical Quantum Gravity 19 (2002), 5195-5220, gr-qc/0206077.
  46. Caselle M., D'Adda A., Magnea L., Regge calculus as a local theory of the Poincaré group, Phys. Lett. B 232 (1989), 457-461.
  47. Daum J.E., Reuter M., Renormalization group flow of the holst action, arXiv:1012.4280.
  48. Ding Y., Han M., Rovelli C., Generalized spinfoams, Phys. Rev. D 83 (2011), 124020, 17 pages, arXiv:1011.2149.
  49. Dittrich B., Diffeomorphism symmetry in quantum gravity models, Adv. Sci. Lett. 2 (2008), 151-163, arXiv:0810.3594.
  50. Dittrich B., How to construct diffeomorphism symmetry on the lattice, arXiv:1201.3840.
  51. Dittrich B., Höhn P.A., Canonical simplicial gravity, Classical Quantum Gravity 29 (2012), 115009, 52 pages, arXiv:1108.1974.
  52. Dittrich B., Höhn P.A., From covariant to canonical formulations of discrete gravity, Classical Quantum Gravity 27 (2010), 155001, 37 pages, arXiv:0912.1817.
  53. Dittrich B., Ryan J.P., Phase space descriptions for simplicial 4D geometries, Classical Quantum Gravity 28 (2011), 065006, 34 pages, arXiv:0807.2806.
  54. Dittrich B., Ryan J.P., Simplicity in simplicial phase space, Phys. Rev. D 82 (2010), 064026, 19 pages, arXiv:1006.4295.
  55. Dittrich B., Speziale S., Area-angle variables for general relativity, New J. Phys. 10 (2008), 083006, 12 pages, arXiv:0802.0864.
  56. Dittrich B., Steinhaus S., Path integral measure and triangulation independence in discrete gravity, Phys. Rev. D 85 (2012), 044032, 21 pages, arXiv:1110.6866.
  57. Drummond I.T., Regge-Palatini calculus, Nuclear Phys. B 273 (1986), 125-136.
  58. Dupuis M., Freidel L., Livine E.R., Speziale S., Holomorphic Lorentzian simplicity constraints, J. Math. Phys. 53 (2012), 032502, 18 pages, arXiv:1107.5274.
  59. Dupuis M., Livine E.R., Holomorphic simplicity constraints for 4D Riemannian spinfoam models, J. Phys. Conf. Ser. 360 (2012), 012046, 4 pages, arXiv:1111.1125.
  60. Dupuis M., Livine E.R., Holomorphic simplicity constraints for 4D spinfoam models, Classical Quantum Gravity 28 (2011), 215022, 32 pages, arXiv:1104.3683.
  61. Dupuis M., Livine E.R., Lifting SU(2) spin networks to projected spin networks, Phys. Rev. D 82 (2010), 064044, 11 pages, arXiv:1008.4093.
  62. Dupuis M., Livine E.R., Revisiting the simplicity constraints and coherent intertwiners, Classical Quantum Gravity 28 (2011), 085001, 36 pages, arXiv:1006.5666.
  63. Dupuis M., Speziale S., Tambornino J., Spinors and twistors in loop gravity and spin foams, arXiv:1201.2120.
  64. Engle J., A proposed proper EPRL vertex amplitude, arXiv:1111.2865.
  65. Engle J., Livine E., Pereira R., Rovelli C., LQG vertex with finite Immirzi parameter, Nuclear Phys. B 799 (2008), 136-149, arXiv:0711.0146.
  66. Engle J., Pereira R., Coherent states, constraint classes and area operators in the new spin-foam models, Classical Quantum Gravity 25 (2008), 105010, 21 pages, arXiv:0710.5017.
  67. Engle J., Pereira R., Rovelli C., Flipped spinfoam vertex and loop gravity, Nuclear Phys. B 798 (2008), 251-290, arXiv:0708.1236.
  68. Engle J., Pereira R., Rovelli C., Loop-quantum-gravity vertex amplitude, Phys. Rev. Lett. 99 (2007), 161301, 4 pages, arXiv:0705.2388.
  69. Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum gravity phase space, arXiv:1110.4833.
  70. Freidel L., Krasnov K., A new spin foam model for 4D gravity, Classical Quantum Gravity 25 (2008), 125018, 36 pages, arXiv:0708.1595.
  71. Freidel L., Minic D., Takeuchi T., Quantum gravity, torsion, parity violation, and all that, Phys. Rev. D 72 (2005), 104002, 6 pages, hep-th/0507253.
  72. Freidel L., Speziale S., From twistors to twisted geometries, Phys. Rev. D 82 (2010), 084041, 5 pages, arXiv:1006.0199.
  73. Freidel L., Speziale S., Twisted geometries: a geometric parametrisation of SU(2) phase space, Phys. Rev. D 82 (2010), 084040, 16 pages, arXiv:1001.2748.
  74. Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, hep-th/0501191.
  75. Gambini R., Pullin J., Classical and quantum general relativity: a new paradigm, Gen. Relativity Gravitation 37 (2005), 1689-1694, gr-qc/0505052.
  76. Gambini R., Pullin J., Consistent discretization and canonical, classical and quantum Regge calculus, Internat. J. Modern Phys. D 15 (2006), 1699-1706, gr-qc/0511096.
  77. Geiller M., Lachièze-Rey M., Noui K., A new look at Lorentz-covariant loop quantum gravity, Phys. Rev. D 84 (2011), 044002, 19 pages, arXiv:1105.4194.
  78. Geiller M., Lachièze-Rey M., Noui K., Sardelli F., A Lorentz-covariant connection for canonical gravity, SIGMA 7 (2011), 083, 10 pages, arXiv:1103.4057.
  79. Geiller M., Noui K., Testing the imposition of the spin foam simplicity constraints, Classical Quantum Gravity 29 (2012), 135008, 28 pages, arXiv:1112.1965.
  80. Hamber H.W., Quantum gravity on the lattice, Gen. Relativity Gravitation 41 (2009), 817-876, arXiv:0901.0964.
  81. Hamber H.W., Williams R.M., Gauge invariance in simplicial gravity, Nuclear Phys. B 487 (1997), 345-408, hep-th/9607153.
  82. Hamber H.W., Williams R.M., On the measure in simplicial gravity, Phys. Rev. D 59 (1999), 064014, 8 pages, hep-th/9708019.
  83. Holm C., Hennig J.D., Regge calculus with torsion, in Group Theoretical Methods in Physics (Moscow, 1990), Lecture Notes in Phys., Vol. 382, Springer, Berlin, 1991, 556-560.
  84. Holst S., Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action, Phys. Rev. D 53 (1996), 5966-5969, gr-qc/9511026.
  85. Immirzi G., Quantizing Regge calculus, Classical Quantum Gravity 13 (1996), 2385-2393, gr-qc/9512040.
  86. Immirzi G., Quantum gravity and Regge calculus, Nuclear Phys. B Proc. Suppl. 57 (1997), 65-72, gr-qc/9701052.
  87. Immirzi G., Real and complex connections for canonical gravity, Classical Quantum Gravity 14 (1997), L177-L181, gr-qc/9612030.
  88. Immirzi G., Regge calculus and Ashtekar variables, Classical Quantum Gravity 11 (1994), 1971-1979, gr-qc/9402004.
  89. Kaminski W., Kisielowski M., Lewandowski J., Spin-foams for all loop quantum gravity, Classical Quantum Gravity 27 (2010), 095006, 24 pages, arXiv:0909.0939.
  90. Khatsymovsky V., Continuous time Regge gravity in the tetrad-connection variables, Classical Quantum Gravity 8 (1991), 1205-1216.
  91. Livine E.R., Projected spin networks for Lorentz connection: linking spin foams and loop gravity, Classical Quantum Gravity 19 (2002), 5525-5541, gr-qc/0207084.
  92. Livine E.R., Speziale S., Consistently solving the simplicity constraints for spinfoam quantum gravity, Europhys. Lett. 81 (2008), 50004, 6 pages, arXiv:0708.1915.
  93. Livine E.R., Speziale S., New spinfoam vertex for quantum gravity, Phys. Rev. D 76 (2007), 084028, 14 pages, arXiv:0705.0674.
  94. Livine E.R., Speziale S., Tambornino J., Twistor networks and covariant twisted geometries, Phys. Rev. D 85 (2012), 064002, 12 pages, arXiv:1108.0369.
  95. Livine E.R., Tambornino J., Spinor representation for loop quantum gravity, J. Math. Phys. 53 (2012), 012503, 33 pages, arXiv:1105.3385.
  96. Magliaro E., Perini C., Curvature in spinfoams, Classical Quantum Gravity 28 (2011), 145028, 11 pages, arXiv:1011.5676.
  97. Mäkelä J., Phase space coordinates and the Hamiltonian constraint of Regge calculus, Phys. Rev. D 49 (1994), 2882-2896.
  98. Mäkelä J., Williams R.M., Constraints on area variables in Regge calculus, Classical Quantum Gravity 18 (2001), L43-L47, gr-qc/0011006.
  99. Mercuri S., Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter, Phys. Rev. D 73 (2006), 084016, 14 pages, gr-qc/0601013.
  100. Perez A., The spin foam approach to quantum gravity, Living Rev. Relativ., to appear, arXiv:1205.2019.
  101. Perez A., Rovelli C., Physical effects of the Immirzi parameter in loop quantum gravity, Phys. Rev. D 73 (2006), 044013, 3 pages, gr-qc/0505081.
  102. Regge T., General relativity without coordinates, Nuovo Cimento 19 (1961), 558-571.
  103. Reisenberger M.P., Classical Euclidean general relativity from "left-handed area = right-handed area", Classical Quantum Gravity 16 (1999), 1357-1371, gr-qc/9804061.
  104. Reisenberger M.P., On relativistic spin network vertices, J. Math. Phys. 40 (1999), 2046-2054, gr-qc/9809067.
  105. Reisenberger M.P., Rovelli C., "Sum over surfaces" form of loop quantum gravity, Phys. Rev. D 56 (1997), 3490-3508, gr-qc/9612035.
  106. Renteln P., Smolin L., A lattice approach to spinorial quantum gravity, Classical Quantum Gravity 6 (1989), 275-294.
  107. Rovelli C., Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum-gravity model is the loop representation basis, Phys. Rev. D 48 (1993), 2702-2707, hep-th/9304164.
  108. Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance, arXiv:1107.2310.
  109. Rovelli C., Graviton propagator from background-independent quantum gravity, Phys. Rev. Lett. 97 (2006), 151301, 4 pages, gr-qc/0508124.
  110. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
  111. Rovelli C., Speziale S., Lorentz covariance of loop quantum gravity, Phys. Rev. D 83 (2011), 104029, 6 pages, arXiv:1012.1739.
  112. Rovelli C., Speziale S., On the geometry of loop quantum gravity on a graph, Phys. Rev. D 82 (2010), 044018, 6 pages, arXiv:1005.2927.
  113. Rovelli C., Wilson-Ewing E., Discrete symmetries in covariant LQG, arXiv:1205.0733.
  114. Schmidt J., Kohler C., Torsion degrees of freedom in the Regge calculus as dislocations on the simplicial lattice, Gen. Relativity Gravitation 33 (2001), 1799-1807, gr-qc/0103111.
  115. Speziale S., Bi-metric theory of gravity from the non-chiral Plebanski action, Phys. Rev. D 82 (2010), 064003, 17 pages, arXiv:1003.4701.
  116. Speziale S., Wieland W.M., New vertices and canonical quantization, arXiv:1207.6348.
  117. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007, gr-qc/0110034.
  118. Thiemann T., Quantum spin dynamics (QSD). VII. Symplectic structures and continuum lattice formulations of gauge field theories, Classical Quantum Gravity 18 (2001), 3293-3338, hep-th/0005232.
  119. Waelbroeck H., Zapata J.A., A Hamiltonian lattice formulation of topological gravity, Classical Quantum Gravity 11 (1994), 989-998, gr-qc/9311035.
  120. Wainwright C., Williams R.M., Area Regge calculus and discontinuous metrics, Classical Quantum Gravity 21 (2004), 4865-4880, gr-qc/0405031.
  121. Wieland W.M., Twistorial phase space for complex Ashtekar variables, Classical Quantum Gravity 29 (2012), 045007, 18 pages, arXiv:1107.5002.
  122. Williams R.M., Quantum Regge calculus, in Approaches to Quantum Gravity, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 360-377.
  123. Williams R.M., Recent progress in Regge calculus, Nuclear Phys. B Proc. Suppl. 57 (1997), 73-81, gr-qc/9702006.

Previous article  Next article   Contents of Volume 8 (2012)