Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 8 (2012), 026, 15 pages      arXiv:1109.4688      http://dx.doi.org/10.3842/SIGMA.2012.026
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Loop Quantum Gravity Vacuum with Nondegenerate Geometry

Tim Koslowski a and Hanno Sahlmann b
a) Perimeter Institute for Theoretical Physics, Waterloo, Canada
b) APCTP, and Physics Department of POSTECH University, Pohang, Korea

Received September 23, 2011, in final form May 03, 2012; Published online May 12, 2012

Abstract
In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss their construction for the Lie algebra as well as the Weyl algebra setting, and point out possible applications in effective field theory, Loop Quantum Cosmology, as well as further generalizations.

Key words: loop quantum gravity; representations, geometric condensate.

pdf (415 kb)   tex (26 kb)

References

  1. Ashtekar A., Lewandowski J., Differential geometry on the space of connections via graphs and projective limits, J. Geom. Phys. 17 (1995), 191-230, hep-th/9412073.
  2. Ashtekar A., Lewandowski J., Projective techniques and functional integration for gauge theories, J. Math. Phys. 36 (1995), 2170-2191, gr-qc/9411046.
  3. Ashtekar A., Lewandowski J., Quantum theory of geometry. I. Area operators, Classical Quantum Gravity 14 (1997), A55-A81, gr-qc/9602046.
  4. Ashtekar A., Lewandowski J., Relation between polymer and Fock excitations, Classical Quantum Gravity 18 (2001), L117-L127, gr-qc/0107043.
  5. Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T., Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys. 36 (1995), 6456-6493, gr-qc/9504018.
  6. Ashtekar A., Rovelli C., Smolin L., Weaving a classical metric with quantum threads, Phys. Rev. Lett. 69 (1992), 237-240, hep-th/9203079.
  7. Bahr B., Thiemann T., Gauge-invariant coherent states for loop quantum gravity. I. Abelian gauge groups, Classical Quantum Gravity 26 (2009), 045011, 22 pages, arXiv:0709.4619.
  8. Bahr B., Thiemann T., Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups, Classical Quantum Gravity 26 (2009), 045012, 45 pages, arXiv:0709.4636.
  9. Bianchi E., Magliaro E., Perini C., Coherent spin-networks, Phys. Rev. D 82 (2010), 024012, 7 pages, arXiv:0912.4054.
  10. Dziendzikowski M., Okolów A., New diffeomorphism invariant states on a holonomy-flux algebra, Classical Quantum Gravity 27 (2010), 225005, 24 pages, arXiv:0912.1278.
  11. Fleischhack C., Construction of generalized connections, math-ph/0601005.
  12. Fleischhack C., Irreducibility of the Weyl algebra in loop quantum gravity, Phys. Rev. Lett. 97 (2006), 061302, 4 pages, math-ph/0407006.
  13. Fleischhack C., Representations of the Weyl algebra in quantum geometry, Comm. Math. Phys. 285 (2009), 67-140, math-ph/0407006.
  14. Freidel L., Livine E.R., U(N) coherent states for loop quantum gravity, J. Math. Phys. 52 (2011), 052502, 21 pages, arXiv:1005.2090.
  15. Koslowski T.A., Cosmological sectors in loop quantum gravity, Ph.D. thesis, Universität Würzburg, 2008.
  16. Koslowski T.A., Dynamical quantum geometry (DQG programme), arXiv:0709.3465.
  17. Lewandowski J., Volume and quantizations, Classical Quantum Gravity 14 (1997), 71-76, gr-qc/9602035.
  18. Lewandowski J., Okolów A., Sahlmann H., Thiemann T., Uniqueness of diffeomorphism invariant states on holonomy-flux algebras, Comm. Math. Phys. 267 (2006), 703-733, gr-qc/0504147.
  19. Okolów A., Lewandowski J., Automorphism covariant representations of the holonomy-flux *-algebra, Classical Quantum Gravity 22 (2005), 657-679, gr-qc/0405119.
  20. Okolów A., Lewandowski J., Diffeomorphism covariant representations of the holonomy-flux *-algebra, Classical Quantum Gravity 20 (2003), 3543-3567, gr-qc/0302059.
  21. Oriti D., Sindoni L., Toward classical geometrodynamics from the group field theory hydrodynamics, New J. Phys. 13 (2011), 025006, 44 pages, arXiv:1010.5149.
  22. Sahlmann H., On loop quantum gravity kinematics with a non-degenerate spatial background, Classical Quantum Gravity 27 (2010), 225007, 17 pages, arXiv:1006.0388.
  23. Sahlmann H., Some results concerning the representation theory of the algebra underlying loop quantum gravity, J. Math. Phys. 52 (2011), 012502, 9 pages, gr-qc/0207111.
  24. Sahlmann H., When do measures on the space of connections support the triad operators of loop quantum gravity?, J. Math. Phys. 52 (2011), 012503, 14 pages, gr-qc/0207112.
  25. Sahlmann H., Thiemann T., Irreducibility of the Ashtekar-Isham-Lewandowski representation, Classical Quantum Gravity 23 (2006), 4453-4471, gr-qc/0303074.
  26. Sahlmann H., Thiemann T., On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories, gr-qc/0302090.
  27. Thiemann T., Complexifier coherent states for quantum general relativity, Classical Quantum Gravity 23 (2006), 2063-2117, gr-qc/0206037.
  28. Thiemann T., Gauge field theory coherent states (GCS). I. General properties, Classical Quantum Gravity 18 (2001), 2025-2064, hep-th/0005233.
  29. Thiemann T., Quantum spin dynamics (QSD), Classical Quantum Gravity 15 (1998), 839-873, gr-qc/9606089.
  30. Varadarajan M., Fock representations from U(1) holonomy algebras, Phys. Rev. D 61 (2000), 104001, 13 pages, gr-qc/0001050.
  31. Varadarajan M., Towards new background independent representations for loop quantum gravity, Classical Quantum Gravity 25 (2008), 105011, 17 pages, arXiv:0709.1680.

Previous article  Next article   Contents of Volume 8 (2012)