Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 8 (2012), 007, 4 pages      arXiv:1201.3575

On the Dimension of the Group of Projective Transformations of Closed Randers and Riemannian Manifolds

Vladimir S. Matveev
Institute of Mathematics, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

Received January 18, 2012, in final form February 21, 2012; Published online February 23, 2012

We construct a counterexample to Theorem 2 of [Rafie-Rad M., Rezaei B., SIGMA 7 (2011), 085, 12 pages].

Key words: Finsler metrics; Randers metrics; projective transformations.

pdf (257 kb)   tex (9 kb)


  1. Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), 377-435, math.DG/0311233.
  2. Beltrami E., Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Ann. di Mat. 1 (1865), no. 7, 185-204.
  3. Chen X., Deng S., A new proof of a theorem of H.C. Wang, Balkan J. Geom. Appl. 16 (2011), 25-26.
  4. Matveev V.S., Die Vermutung von Obata für Dimension 2, Arch. Math. (Basel) 82 (2004), 273-281.
  5. Matveev V.S., Geometric explanation of the Beltrami theorem, Int. J. Geom. Methods Mod. Phys. 3 (2006), 623-629.
  6. Matveev V.S., On projective equivalence and pointwise projective relation of Randers metrics, arXiv:1112.6143.
  7. Matveev V.S., Proof of the projective Lichnerowicz-Obata conjecture, J. Differential Geom. 75 (2007), 459-502, math.DG/0407337.
  8. Matveev V.S., Troyanov M., The Binet-Legendre metric in Finsler geometry, arXiv:1104.1647.
  9. Rafie-Rad M., Rezaei B., On the projective algebra of Randers metrics of constant flag curvature, SIGMA 7 (2011), 085, 12 pages, arXiv:1108.6127.
  10. Wang H.C., On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22 (1947), 5-9.

Previous article  Next article   Contents of Volume 8 (2012)