Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 7 (2011), 116, 12 pages      arXiv:1102.0718      http://dx.doi.org/10.3842/SIGMA.2011.116

Noncommutative Phase Spaces by Coadjoint Orbits Method

Ancille Ngendakumana a, Joachim Nzotungicimpaye b and Leonard Todjihounde a
a) Institut de Mathématiques et des Sciences Physiques, Porto-Novo, Benin
b) Kigali Institute of Education, Kigali, Rwanda

Received May 24, 2011, in final form December 13, 2011; Published online December 18, 2011

Abstract
We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing). We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.

Key words: classical mechanics; noncommutative phase space; coadjoint orbit; symplectic realizations; magnetic and dual magnetic fields.

pdf (299 Kb)   tex (13 Kb)

References

  1. Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
  2. Derome J.R., Dubois J.G., Hooke's symmetries and nonrelativistic cosmological kinematics. I, Nuovo Cimento B 9 (1972), 351-376.
  3. Duval C., Horváthy P.A., The exotic Galilei group and the "Peierls substitution", Phys. Lett. B 479 (2000), 284-290, hep-th/0002233.
  4. Duval C., Horváthy P.A., Exotic Galilean symmetry in the non-commutative plane and the Hall effect, J. Phys. A: Math. Gen. 34 (2001), 10097-10107, hep-th/0106089.
  5. Duval C., Horváth Z., Horváthy P.A., Exotic plasma as classical Hall liquid, Internat. J. Modern Phys. B 15 (2001), 3397-3408, cond-mat/0101449.
  6. Grigore D.R., Transitive symplectic manifolds in 1+2 dimensions, J. Math. Phys. 37 (1996), 240-253.
  7. Guillemin V., Sternberg S., Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984.
  8. Hamermesh M., Group theory and its applications to physical problems, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Inc., Reading, Mass. - London, 1962.
  9. Horváthy P.A., The non-commutative Landau problem, Ann. Physics 299 (2002), 128-140, hep-th/0201007.
  10. Kirillov A.A., Elements of theory of representations, Grundlehren der Mathematischen Wissenschaften, Band 220, Springer-Verlag, Berlin - New York, 1976.
  11. Kostant B., Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
  12. Nzotungicimpaye J., Galilei-Newton law by group theoretical methods, Lett. Math. Phys. 15 (1988), 101-110.
  13. Nzotungicimpaye J., Jerk by group theoretical methods, J. Phys. A: Math. Gen. 27 (1994), 4519-4526.
  14. Peierls R., On the theory of diamagnetism of conduction electrons, Z. Phys. 80 (1933), 763-791.
  15. Romero J.M., Santiago J.A., Vergara J.D., Newton's second law in a non-commutative space, Phys. Lett. A 310 (2003), 9-12, hep-th/0211165.
  16. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
  17. Souriau J.-M., Structure des systèmes dynamiques, Maîtrises de Mathématiques Dunod, Paris, 1970.
  18. Vanhecke F.J., Sigaud C., da Silva A.R., Noncommutative configuration space. Classical and quantum mechanical aspects, Braz. J. Phys. 36 (2006), 194-207, math-ph/0502003.
  19. Vanhecke F.J., Sigaud C., da Silva A.R., Modified symplectic structures in cotangent bundles of Lie groups aspects, Braz. J. Phys. 39 (2009), 18-24, arXiv:0804.1251.
  20. Wei G.-F., Long C.-Y., Long Z.-W., Qin S.-J., Fu Q., Classical mechanics in non-commutative phase space, Chinese Phys. C 32 (2008), 338-341.

Previous article   Next article   Contents of Volume 7 (2011)