Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 107, 24 pages      arXiv:0912.5447

Properties of the Exceptional (Xl) Laguerre and Jacobi Polynomials

Choon-Lin Ho a, Satoru Odake b and Ryu Sasaki c
a) Department of Physics, Tamkang University, Tamsui 251, Taiwan (R.O.C.)
b) Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
c) Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Received April 18, 2011, in final form November 19, 2011; Published online November 25, 2011

We present various results on the properties of the four infinite sets of the exceptional Xl polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414-417; Phys. Lett. B 684 (2010), 173-176]. These Xl polynomials are global solutions of second order Fuchsian differential equations with l+3 regular singularities and their confluent limits. We derive equivalent but much simpler looking forms of the Xl polynomials. The other subjects discussed in detail are: factorisation of the Fuchsian differential operators, shape invariance, the forward and backward shift operations, invariant polynomial subspaces under the Fuchsian differential operators, the Gram-Schmidt orthonormalisation procedure, three term recurrence relations and the generating functions for the Xl polynomials.

Key words: exceptional orthogonal polynomials; Gram-Schmidt process; Rodrigues formulas; generating functions.

pdf (471 Kb)   tex (26 Kb)


  1. Odake S., Sasaki R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417, arXiv:0906.0142.
  2. Odake S., Sasaki R., Another set of infinitely many exceptional (Xl) Laguerre polynomials, Phys. Lett. B 684 (2010), 173-176, arXiv:0911.3442.
  3. Infeld L., Hull T.E., The factorization method, Rev. Modern Phys. 23 (1951), 21-68.
  4. Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995), 267-385, hep-th/9405029.
  5. Darboux G., Sur une proposition relative aux équations linéaires, C.R. Acad. Paris 94 (1882), 1456-1459.
    Darboux G., Leçons sur la théorie des surfaces, Vol. 2, 2nd ed., Gauthier-Villars, Paris, 1915, 210-215.
    Pöschl G., Teller E., Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Z. Phys. 83 (1933), 143-151.
  6. Bochner S., Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736.
  7. Gómez-Ullate D., Kamran N., Milson R., An extension of Bochner's problem: exceptional invariant subspaces, J. Approx. Theory 162 (2010), 987-1006, arXiv:0805.3376.
    Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. 359 (2009), 352-367, arXiv:0807.3939.
  8. Gómez-Ullate D., Kamran N., Milson R., Supersymmetry and algebraic Darboux transformations, J. Phys. A: Math. Gen. 37 (2004), 10065-10078, nlin.SI/0402052.
    Gómez-Ullate D., Kamran N., Milson R., Quasi-exact solvability and the direct approach to invariant subspaces, J. Phys. A: Math. Gen. 38 (2005), 2005-2019, nlin.SI/0401030.
  9. Gendenshtein L.E., Derivation of exact spectra of the Schrödinger equation by means of supersymmetry, JETP Lett. 38 (1983), 356-359.
  10. Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001, 6 pages, arXiv:0807.4087.
  11. Bagchi B., Quesne C., Roychoudhury R., Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry, Pramana J. Phys. 73 (2009), 337-347, arXiv:0812.1488.
  12. Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
  13. Quesne C., Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA 5 (2009), 084, 24 pages, arXiv:0906.2331.
  14. Tanaka T., N-fold supersymmetry and quasi-solvability associated with X2-Laguerre polynomials, J. Math. Phys. 51 (2010), 032101, 20 pages, arXiv:0910.0328.
  15. Odake S., Sasaki R., Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials, J. Math. Phys. 51 (2010), 053513, 9 pages, arXiv:0911.1585.
  16. Odake S., Sasaki R., Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey-Wilson polynomials, Phys. Lett. B 682 (2009), 130-136, arXiv:0909.3668.
  17. Gómez-Ullate D., Kamran N., Milson R., Exceptional orthogonal polynomials and the Darboux transformation, J. Phys. A: Math. Theor. 43 (2010), 434016, 16 pages, arXiv:1002.2666.
  18. Sasaki R., Tsujimoto S., Zhedanov A., Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations, J. Phys. A: Math. Theor. 43 (2010), 315204, 20 pages, arXiv:1004.4711.
  19. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  20. Heine H.E., Theorie der Kugelfunctionen und der verwandten Functionen, Berlin, 1878.
    Stieltjes T.J., Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé, Acta Math. 6 (1885), 321-326.

Previous article   Next article   Contents of Volume 7 (2011)