Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 091, 12 pages      arXiv:1105.2985
Contribution to the Proceedings of the Conference “Symmetries and Integrability of Difference Equations (SIDE-9)”

Symplectic Maps from Cluster Algebras

Allan P. Fordy a and Andrew Hone b
a) School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
b) School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK

Received May 16, 2011, in final form September 16, 2011; Published online September 22, 2011

We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables). Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension). We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map.

Key words: integrable maps; Poisson algebra; Laurent property; cluster algebra; algebraic entropy; tropical.

pdf (336 kb)   tex (17 kb)


  1. Bellon M.P., Viallet C.-M., Algebraic entropy, Comm. Math. Phys. 204 (1999), 425-437, chao-dyn/9805006.
  2. Buchholz R.H., Rathbun R.L., An infinite set of Heron triangles with two rational medians, Amer. Math. Monthly 204 (1997), 107-115.
  3. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, math.AG/0311245.
  4. Fomin S., Zelevinsky A., Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
  5. Fomin S., Zelevinsky A., The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144, math.CO/0104241.
  6. Fordy A.P., Mutation-periodic quivers, integrable maps and associated Poisson algebras, Philos. Trans. R. Soc. Lond. Ser. A 369 (2011), no. 1939, 1264-1279, arXiv:1003.3952.
  7. Fordy A.P., Hone A.N.W., Discrete integrable systems and Poisson algebras from cluster maps, in preparation.
  8. Fordy A.P., Marsh R.J., Cluster mutation-periodic quivers and associated Laurent sequences, J. Algebraic Comb. 34 (2011), 19-66, arXiv:0904.0200.
  9. Gale D., The strange and surprising saga of the Somos sequences, Math. Intelligencer 13 (1991), no. 1, 40-42.
    Gale D., Somos sequence update, Math. Intelligencer 13 (1991), no. 4, 49-50 (reprinted in Tracking the Automatic Ant., Springer-Verlag, New York, 1998).
  10. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899-934, math.QA/0208033.
  11. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, math.QA/0309138.
  12. Hone A.N.W., Sigma function solution of the initial value problem for Somos 5 sequences, Trans. Amer. Math. Soc. 359 (2007), 5019-5034, math.NT/0501554.
  13. Joshi N., Lafortune S., Ramani A., Hirota bilinear formalism and ultra-discrete singularity analysis, Nonlinearity 22 (2009), 871-887.
  14. Nobe A., Ultradiscrete QRT maps and tropical elliptic curves, J. Phys. A: Math. Theor. 41 (2008), 125205, 12 pages.
  15. Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations. II, Phys. D 34 (1989), 183-192.
  16. Speyer D., Sturmfels B., Tropical mathematics, Math. Mag. 82 (2009), no. 3, 163-173, math.CO/0408099.
  17. Veselov A.P., Integrable maps, Russian Math. Surveys 46 (1991), no. 5, 1-51.

Previous article   Next article   Contents of Volume 7 (2011)