Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 060, 18 pages      arXiv:1106.4623
Contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S4)”

The BGG Complex on Projective Space

Michael G. Eastwood a and A. Rod Gover a, b
a) Mathematical Sciences Institute, Australian National University, ACT 0200, Australia
b) Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Received January 30, 2011, in final form June 18, 2011; Published online June 23, 2011

We give a complete construction of the Bernstein-Gelfand-Gelfand complex on real or complex projective space using minimal ingredients.

Key words: differential complex; BGG complex; projective space; Lie algebra cohomology; parabolic geometry.

pdf (439 kb)   tex (25 kb)


  1. Baston R.J., Almost Hermitian symmetric manifolds. II. Differential invariants, Duke Math. J. 63 (1991), 113-138.
  2. Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford University Press, New York, 1989.
  3. Calderbank D.M.J., Diemer T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67-103, math.DG/0001158.
  4. Calderbank D.M.J., Diemer T., Soucek V., Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. 23 (2005), 149-175, math.DG/0310311.
  5. Cap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, Vol. 154, American Mathematical Society, Providence, RI, 2009.
  6. Cap A., Slovák J., Soucek V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 154 (2001), 97-113, math.DG/0001164.
  7. Cartan É., Schouten J.A., On the geometry of the group-manifold of simple and semi-simple groups, Nederl. Akad. Wetensch. Proc. Ser. A 29 (1926), 803-815.
  8. Chevalley C.C., Eilenberg S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
  9. Chow T.Y., You could have invented spectral sequences, Notices Amer. Math. Soc. 53 (2006), 15-19.
  10. Eastwood M.G., A duality for homogeneous bundles on twistor space, J. London Math. Soc. (2) 31 (1985), 349-356.
  11. Eastwood M.G., Variations on the de Rham complex, Notices Amer. Math. Soc. 46 (1999), 1368-1376.
  12. Eastwood M.G., Notes on projective differential geometry, in Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., Vol. 144, Springer, New York, 2008, 41-60.
  13. Eastwood, M.G., Tod, K.P., Edth - a differential operator on the sphere, Math. Proc. Cambridge Philos. Soc. 92 (1982), 317-330.
  14. Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
  15. Gover A.R., Conformally invariant operators of standard type, Quart. J. Math. Oxford Ser. (2) 40 (1989), 197-207.
  16. Kobayashi S., Nomizu K., Foundations of differential geometry. II, Wiley Interscience, New York - London - Sydney, 1969.
  17. Kostant B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387.
  18. Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra 49 (1977), 496-511.
  19. Olver P., Differential hyperforms I,
  20. Penrose R., Rindler W., Spinors and space-time. Vol. 1. Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984.
  21. Rice J.W., Private communication, January 1985.
  22. Schouten J.A., Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Springer-Verlag, Berlin, 1954.
  23. Sternberg S., Lie algebras,
  24. Vogan D.A., Representations of real reductive Lie groups, Progress in Mathematics, Vol. 15, Birkhäuser, Boston, Mass., 1981.
  25. Woodhouse N.M.J., Geometric quantisation, 2nd ed., Oxford University Press, New York, 1992.

Previous article   Next article   Contents of Volume 7 (2011)