Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 014, 12 pages      arXiv:1001.3436

Schrödinger-like Dilaton Gravity

Yu Nakayama a, b
a) Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA
b) Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

Received September 16, 2010, in final form February 02, 2011; Published online February 08, 2011

We investigate possibilities for a Schrödinger-like gravity with the dynamical critical exponent z=2, where the action only contains the first-order time derivative. The Horava gravity always admits such a relevant deformation because the full (d+1) dimensional diffeomorphism of the Einstein gravity is replaced by the foliation preserving diffeomorphism. The dynamics is locally trivial or topological in the pure gravity case, but we can construct a dynamical field theory with a z=2 dispersion relation by introducing a dilaton degree of freedom. Our model provides a classical starting point for the possible quantum dilaton gravity which may be applied to a membrane quantization.

Key words: non-relativistic gravity; membrane quantization.

pdf (288 Kb)   tex (15 Kb)


  1. Horava P., Membranes at quantum criticality, J. High Energy Phys. 2009 (2009), no. 3, 020, 34 pages, arXiv:0812.4287.
  2. Horava P., Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009), 084008, 15 pages, arXiv:0901.3775.
  3. Horava P., Spectral dimension of the Universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett. 102 (2009), 161301, 4 pages, arXiv:0902.3657.
  4. Hagen C.R., Scale and conformal transformations in Galilean-covariant field theory, Phys. Rev. D 5 (1972), 377-388.
  5. Niederer U., The maximal kinematical invariance group of the free Schrödinger equation, Helv. Phys. Acta 45 (1972), 802-810.
  6. Li M., Pang Y., A trouble with Horava-Lifshitz gravity, J. High Energy Phys. 2009 (2009), no. 8, 015, 12 pages, arXiv:0905.2751.
  7. Mukohyama S., Dark matter as integration constant in Horava-Lifshitz gravity, Phys. Rev. D 80 (2009), 064005, 6 pages, arXiv:0905.3563.
  8. Blas D., Pujolas O., Sibiryakov S., On the extra mode and inconsistency of Horava gravity, J. High Energy Phys. 2009 (2009), no. 10, 029, 29 pages, arXiv:0906.3046.
  9. Henneaux M., Kleinschmidt A., Gomez G.L., A dynamical inconsistency of Horava gravity, Phys. Rev. D 81 (2010), 064002, 11 pages, arXiv:0912.0399.
  10. Charmousis C., Niz G., Padilla A., Saffin P.M., Strong coupling in Horava gravity, J. High Energy Phys. 2009 (2009), no. 8, 070, 17 pages, arXiv:0905.2579.
  11. Nakayama Y., Liouville field theory: a decade after the revolution, Internat. J. Modern Phys. A 19 (2004), 2771-2930, hep-th/0402009.
  12. Jackiw R., Pi S.Y., Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D 42 (1990), 3500-3513, Erratum, Phys. Rev. D 48 (1993), 3929-3929.
  13. Nakayama Y., Sakaguchi M., Yoshida K., Non-relativistic M2-brane gauge theory and new superconformal algebra, J. High Energy Phys. 2009 (2009), no. 4, 096, 21 pages, arXiv:0902.2204.
  14. Lee K.-M., Lee S., Lee S., Non-relativistic superconformal M2-brane theory, J. High Energy Phys. 2009 (2009), no. 9, 030, 32 pages, arXiv:0902.3857.
  15. Nakayama Y., Rey S.-J., Observables and correlators in non-relativistic ABJM theory, J. High Energy Phys. 2009 (2009), no. 8, 029, 28 pages, arXiv:0905.2940.

Previous article   Next article   Contents of Volume 7 (2011)