Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 002, 5 pages      arXiv:1010.5709

Singularity Analysis and Integrability of a Burgers-Type System of Foursov

Sergei Sakovich a, b
a) Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus
b) Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Received October 28, 2010, in final form December 24, 2010; Published online January 04, 2011

We apply the Painlevé test for integrability of partial differential equations to a system of two coupled Burgers-type equations found by Foursov, which was recently shown by Sergyeyev to possess infinitely many commuting local generalized symmetries without any recursion operator. The Painlevé analysis easily detects that this is a typical C-integrable system in the Calogero sense and rediscovers its linearizing transformation.

Key words: coupled Burgers-type equations; Painlevé test for integrability.

pdf (225 Kb)   tex (9 Kb)


  1. Foursov M.V., On integrable coupled Burgers-type equations, Phys. Lett. A 272 (2000), 57-64.
  2. Svinolupov S.I., On the analogues of the Burgers equation, Phys. Lett. A 135 (1989), 32-36.
  3. Olver P.J., Sokolov V.V., Integrable evolution equations on associative algebras, Comm. Math. Phys. 193 (1998), 245-268.
  4. Sergyeyev A., Infinitely many local higher symmetries without recursion operator or master symmetry: integrability of the Foursov-Burgers system revisited, Acta Appl. Math. 109 (2010), 273-281, arXiv:0804.2020.
  5. Weiss J., Tabor M., Carnevale G., The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), 522-526.
  6. Tabor M., Chaos and integrability in nonlinear dynamics. An introduction, John Wiley & Sons, Inc., New York, 1989.
  7. Ramani A., Grammaticos B., Bountis T., The Painlevé property and singularity analysis of integrable and non-integrable systems, Phys. Rep. 180 (1989), 159-245.
  8. Calogero F., Why are certain nonlinear PDEs both widely applicable and integrable?, in What is Integrability?, Editor V.E. Zakharov, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 1-62.
  9. Tsuchida T., Wolf T., Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I, J. Phys. A: Math. Gen. 38 (2005), 7691-7733, nlin.SI/0412003.
  10. Sakovich S.Yu., A system of four ODEs: the singularity analysis, J. Nonlinear Math. Phys. 8 (2001), 217-219, nlin.SI/0003039.
  11. Weiss J., The Painlevé property for partial differential equations. II. Bäcklund transformations, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24 (1983), 1405-1413.
  12. Steeb W.-H., Kloke M., Spieker B.M., Liouville equation, Painlevé property and Bäcklund transformation, Z. Naturforsch. A 38 (1983), 1054-1055.
  13. Musette M., Conte R., Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations, J. Math. Phys. 32 (1991), 1450-1457.
  14. Karasu-Kalkanl A., Sakovich S.Yu., Bäcklund transformation and special solutions for the Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations, J. Phys. A: Math. Gen. 34 (2001), 7355-7358, nlin.SI/0102001.
  15. Karasu-Kalkanl A., Karasu A., Sakovich A., Sakovich S., Turhan R., A new integrable generalization of the Korteweg-de Vries equation, J. Math. Phys. 49 (2008), 073516, 10 pages, arXiv:0708.3247.
  16. Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008.
  17. Hone A.N.W., Painlevé tests, singularity structure and integrability, in Integrability, Editor A.V. Mikhailov, Lecture Notes in Physics, Vol. 767, Springer, Berlin, 2009, 245-277, nlin.SI/0502017.
  18. Estévez P.G., Prada J., Lump solutions for PDE's: algorithmic construction and classification, J. Nonlinear Math. Phys. 15 (2008), suppl. 3, 166-175.

Previous article   Next article   Contents of Volume 7 (2011)