Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 094, 22 pages      arXiv:1012.1455      http://dx.doi.org/10.3842/SIGMA.2010.094
Contribution to the Proceedings of the International Workshop “Recent Advances in Quantum Integrable Systems”

Universal Bethe Ansatz and Scalar Products of Bethe Vectors

Samuel Belliard a, Stanislav Pakuliak b and Eric Ragoucy c
a) Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
b) Institute of Theoretical & Experimental Physics, 117259 Moscow, Russia
    Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
    Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow reg., Russia

c) Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France

Received October 25, 2010; Published online December 14, 2010

Abstract
An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable models associated with the quantum affine algebra Uq(^gl3) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms of the total currents of a ''new'' realization of the quantum affine algebra Uq(^gl3).

Key words: Bethe ansatz; quantum affine algebras.

pdf (359 kb)   ps (232 kb)   tex (25 kb)

References

  1. Bethe H., Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71 (1931), 205-226.
  2. Takhtajan L.A., Faddeev L.D., The quantum method of the inverse problem and the Heisenberg XYZ model, Russian Math. Surveys 34 (1979), no. 5, 11-68.
  3. Sklyanin E.K., Faddeev L.D., Quantum mechanical approach to completely integrable field theory models, Sov. Phys. Dokl. 23 (1978), 902-904.
  4. Sklyanin E.K., Takhtajan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1980), 688-706.
  5. Faddeev L.D., How algebraic Bethe ansatz works for integrable models, in Symétries Quantiques (Les Houches, 1995), Editors A. Connes et al., North-Holland, Amsterdam, 1998, 149-219, hep-th/9605187.
  6. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  7. Izergin A.G., Korepin V.E., The quantum inverse scattering method approach to correlation functions, Comm. Math. Phys. 94 (1984), 67-92.
  8. Izergin A.G., Partition function of a six-vertex model in a finite volume, Soviet Phys. Dokl. 32 (1987), 878-879.
  9. Slavnov N.A., Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502-508.
  10. Kojima T., Korepin V.E., Slavnov N.A., Determinant representation for dynamical correlation functions of the quantum nonlinear Schrödinger equation, Comm. Math. Phys. 188 (1997), 657-689, hep-th/9611216.
  11. Izergin A.G., Kitanine N., Maillet J.M., Terras V., Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain, Nuclear Phys. B 554 (1999), 679-696, solv-int/9812021.
  12. Kitanine N., Maillet J.M., Terras V., Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field, Nuclear Phys. B 567 (2000), 554-582, math-ph/9907019.
  13. Kitanine N., Maillet J.M., Slavnov N.A., Terras V., Master equation for spin-spin correlation functions of the XXZ chain, Nuclear Phys. B 712 (2005), 600-622, hep-th/0406190.
  14. Kulish P.P., Reshetikhin N.Yu., Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A: Math. Gen. 16 (1983), L591-L596.
  15. Belliard S., Ragoucy E., The nested Bethe ansatz for ''all'' closed spin chains, J. Phys. A: Math. Theor. 41 (2008), 295202, 33 pages, arXiv:0804.2822.
  16. Varchenko A.N., Tarasov V.O., Jackson integrals for the solutions to Knizhnik-Zamolodchikov equation, St. Petersburg Math. J. 2 (1995), 275-313.
  17. Tarasov V., Varchenko A., Combinatorial formulae for nested Bethe vectors, math.QA/0702277.
  18. Drinfel'd V.G., New realization of Yangians and of quantum affine algebras, Sov. Math. Dokl. 36 (1988), 212-216.
  19. Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra Uq(^glN), Comm. Math. Phys. 156 (1993), 277-300.
  20. Khoroshkin S., Pakuliak S., A computation of an universal weight function for the quantum affine algebra Uq(^glN), J. Math. Kyoto Univ. 48 (2008), 277-321, arXiv:0711.2819.
  21. Frappat L., Khoroshkin S., Pakuliak S., Ragoucy E., Bethe ansatz for the universal weight function, Ann. Henri Poincaré 10 (2009), 513-548, arXiv:0810.3135.
  22. Arnaudon D., Crampé N., Doikou A., Frappat, L., Ragoucy E. Spectrum and Bethe ansatz equations for the Uq(gl(N) ) closed and open spin chains in any representation, Ann. Henri Poincaré 7 (2006), 1217-1268, math-ph/0512037.
  23. Slavnov N.A., The algebraic Bethe ansatz and quantum integrable systems, Russian Math. Surveys 62 (2007), 727-766.
  24. Os'kin A., Pakuliak S., Silantyev A., On the universal weight function for the quantum affine algebra Uq(^glN), St. Petersburg Math. J. 21 (2010), 651-680, arXiv:0711.2821.
  25. Enriquez B., Rubtsov V., Quasi-Hopf algebras associated with sl2 and complex curves, Israel J. Math. 112 (1999), 61-108, q-alg/9608005.
  26. Enriquez B., Khoroshkin S., Pakuliak S., Weight functions and Drinfeld currents, Comm. Math. Phys. 276 (2007), 691-725, math.QA/0610398.
  27. Khoroshkin S., Pakuliak S., Tarasov V., Off-shell Bethe vectors and Drinfeld currents, J. Geom. Phys. 57 (2007), 1713-1732, math.QA/0610517.
  28. Pakuliak S.Z., Khoroshkin S.M., The weight function for the quantum affine algebra Uq(^sl3), Theoret. and Math. Phys. 145 (2005), 1373-1399, math.QA/0610433.

Previous article   Next article   Contents of Volume 6 (2010)