Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 067, 47 pages      arXiv:1007.4094      http://dx.doi.org/10.3842/SIGMA.2010.067
Contribution to the Special Issue “Noncommutative Spaces and Fields”

Modular Theory, Non-Commutative Geometry and Quantum Gravity

Paolo Bertozzini a, Roberto Conti b and Wicharn Lewkeeratiyutkul c
a) Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
b) Dipartimento di Scienze, Università di Chieti-Pescara ''G. D'Annunzio'', Viale Pindaro 42, I-65127 Pescara, Italy
c) Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Received March 30, 2010, in final form July 26, 2010; Published online August 19, 2010

Abstract
This paper contains the first written exposition of some ideas (announced in a previous survey) on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

Key words: modular theory; non-commutative geometry; spectral triple; category theory; quantum physics; space-time.

pdf (722 kb)   ps (347 kb)   tex (69 kb)

References

  1. Aastrup J., Grimstrup J., Spectral triples of holonomy loops, Comm. Math. Phys. 264 (2006), 657-681, hep-th/0503246.
  2. Aastrup J., Grimstrup J., Intersecting Connes noncommutative geometry with quantum gravity, Internat. J. Modern Phys. A 22 (2007), 1589-1603, hep-th/0601127.
  3. Aastrup J., Grimstrup J., Lattice loop quantum gravity, arXiv:0911.4141.
  4. Aastrup J., Grimstrup J., Nest R., On spectral triples in quantum gravity. I, Classical Quantum Gravity 26 (2009), 065011, 53 pages, arXiv:0802.1783.
  5. Aastrup J., Grimstrup J., Nest R., On spectral triples in quantum gravity. II, J. Noncommut. Geom. 3 (2009), 47-81, arXiv:0802.1784.
  6. Aastrup J., Grimstrup J., Nest R., A new spectral triple over a space of connections, Comm. Math. Phys. 290 (2009), 389-398, arXiv:0807.3664.
  7. Aastrup J., Grimstrup J., Nest R., Holonomy loops, spectral triples and quantum gravity, Classical Quantum Gravity 26 (2009), 165001, 17 pages, arXiv:0902.4191.
  8. Aastrup J., Grimstrup J., Nest R., Paschke M., On semi-classical states of quantum gravity and noncommutative geometry, arXiv:0907.5510.
  9. Aastrup J., Grimstrup J., Paschke M., Emergent Dirac Hamiltonians in quantum gravity, arXiv:0911.2404.
  10. Aastrup J., Grimstrup J., Paschke M., On a derivation of the Dirac Hamiltonian from a construction of quantum gravity, arXiv:1003.3802.
  11. Araki H., Mathematical theory of quantum fields, International Series of Monographs on Physics, Vol. 101, Oxford University Press, New York, 1999.
  12. Araki H., Zsidó L., Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys. 17 (2005), 491-543, math.OA/0412061.
  13. Asselmeyer-Maluga T., Krol J., Exotic smooth R4, noncommutative algebras and quantization, arXiv:1001.0882.
  14. Bär C., Ginoux N., Pfäffle F., Wave equations on Lorentzian manifolds and quantization, arXiv:0806.1036.
  15. Baaj S., Julg P., Théorie bivariante de Kasparov et opérateurs non bornée dans les C*-modules Hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875-878.
  16. Baez J., Higher-dimensional algebra and Planck-scale physics, in Physics Meets Philosophy at the Planck Length, Editors C. Callender and N. Huggett, Cambridge University Press, Cambridge, 2001, 177-195, gr-qc/9902017.
  17. Baez J., Quantum quandaries: a category theoretic perspective, in The Structural Foundations of Quantum Gravity, Editors S. French, D. Rickles and J. Saatsi, Oxford Univ. Press, Oxford, 2006, 240-265, quant-ph/0404040.
  18. Bannier U., Intrinsic algebraic characterization of space-time structure, Internat. J. Theoret. Phys. 33 (1994), 1797-1809.
  19. Bardeen J.M., Carter B., Hawking S.W., The four laws of black hole mechanics, Comm. Math. Phys. 31 (1973), 161-170.
  20. Bekenstein J.D., Black holes and entropy, Phys. Rev. D 7 (1973), 2333-2346.
  21. Bekenstein, J., Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D 9 (1974), 3292-3300.
  22. Benameur M.-T., Carey A.L., Phillips J., Rennie A., Sukochev F.A., Wojciechowski K.P., An analytic approach to spectral flow in von Neumann algebras, in Analysis, Geometry and Topology of Elliptic Operators, World Sci. Publ., Hackensack, NJ, 2006, 297-352, math.OA/0512454.
  23. Benameur M.-T., Fack T., On von Neumann spectral triples, math.KT/0012233.
  24. Benfatto G., D'Antoni C., Nicolò F., Rossi G., Introduzione alla teoria delle algebre di von Neumann e teorema di Tomita-Takesaki, Notes of seminar lectures of S. Doplicher, academic years 1973-74 and 1974-75, Quaderni del Consiglio Nazionale delle Ricerche, Rome, 1976.
  25. Bertozzini P., Spectral space-time and hypercovariant theories, 2001, unpublished.
  26. Bertozzini P., Categories of spectral geometries, Slides and video of the talk at the "Second Workshop on Categories Logic and Physics", Imperial College, London, UK, 14 May 2008, available at http://www.comlab.ox.ac.uk/conferences/categorieslogicphysics/clap2/clap2-paolobertozzini.pdf.
  27. Bertozzini P., Modular spectral geometries for algebraic quantum gravity, Slides of the talk at the "QG2-2008 Quantum Geometry and Quantum Gravity Conference", University of Nottingham, UK, 01 July 2008, available at http://echo.maths.nottingham.ac.uk/qg/wiki/images/3/39/BertozziniPaolo1234.pdf.
  28. Bertozzini P., Conti R., Lewkeeratiyutkul W., Modular spectral triples in non-commutative geometry and physics, Research Report, Thai Research Fund, Bangkok, 2005.
  29. Bertozzini P., Conti R., Lewkeeratiyutkul W., A horizontal categorification of Gel'fand duality, Adv. Math., to appear, arXiv:0812.3601.
  30. Bertozzini P., Conti R., Lewkeeratiyutkul W., Non-commutative geometry, categories and quantum physics, East-West J. Math. 2007 (2007), Spec. Vol., 213-259, arXiv:0801.2826.
  31. Bertozzini P., Conti R., Lewkeeratiyutkul W., Enriched Fell bundles and spaceoids, Preprint, 2009.
  32. Bertozzini P., Rutamorn K., Krein C*-categories, Chamchuri J. Math. 2 (2009), 63-77.
  33. Bisognano J.J., Wichmann E.H., On the duality condition for Hermitian scalar fields, J. Math. Phys. 16 (1975), 985-1007.
  34. Bisognano J.J., Wichmann E.H., On the duality condition for quantum fields, J. Math. Phys. 17 (1976), 303-321.
  35. Blackadar B., Operator algebras. Theory of C*-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, Vol 122, Operator Algebras and Non-commutative Geometry, III. Springer-Verlag, Berlin, 2006.
  36. Borchers H.-J., The CPT-theorem in two-dimensional theories of local observables, Comm. Math. Phys. 143 (1992), 315-322.
  37. Borchers H.-J., Half-sided modular inclusion and the construction of the Poincaré group, Comm. Math. Phys. 179 (1996), 703-723.
  38. Borchers H.-J., On revolutionizing quantum field theory, J. Math. Phys. 41 (2000), 3604-3673.
  39. Borchers H.-J., Yngvason J., Modular groups of quantum fields in thermal states, J. Math. Phys. 40 (1999), 601-624, math-ph/9805013.
  40. Borris M., Verch R., Dirac field on Moyal-Minkowski spacetime and non-commutative potential scattering, Comm. Math. Phys. 293 (2010), 399-448, arXiv:0812.0786.
  41. Boström K., Quantizing time, quant-ph/0301049.
  42. Boström K., Basic concepts for a quantum mechanical theory of events, quant-ph/0411175.
  43. Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics. I. C*- and W*-algebras, algebras, symmetry groups, decomposition of states, Texts and Monographs in Physics, Springer-Verlag, New York - Heidelberg, 1979.
    Bratteli O., Robinson D.W., Operator algebras and quantum-statistical mechanics. II. Equilibrium states. Models in quantum-statistical mechanics, Texts and Monographs in Physics, Springer-Verlag, New York - Berlin, 1981.
  44. Breuer M., Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243-254.
  45. Breuer M., Fredholm theories in von Neumann algebras. II, Math. Ann. 180 (1969), 313-325.
  46. Brunetti R., Fredenhagen K., Time of occurrence observable in quantum mechanics, Phys. Rev. A 66 (2002), 044101, 3 pages, quant-ph/0103144.
  47. Brunetti R., Fredenhagen K., Hoge M., Time in quantum physics: from an external parameter to an intrinsic observable, arXiv:0909.1899.
  48. Brunetti R., Fredenhagen K., Verch R., The generally covariant locality principle - a new paradigm for local quantum physics, Comm. Math. Phys. 237 (2003), 31-68, math-ph/0112041.
  49. Brunetti R., Guido D. Longo R., Group cohomology, modular theory and space-time symmetries, Rev. Math. Phys. 7 (1994), 57-71, funct-an/9401002.
  50. Brunetti R., Guido D., Longo R., Modular localization and Wigner particles, Rev. Math. Phys. 14 (2002), 759-785, math-ph/0203021.
  51. Brunetti R., Porrmann M., Ruzzi G., General covariance in algebraic quantum field theory, in Variations on a Century of Relativity: Theory and Applications, Lect. Notes Semin. Interdiscip. Mat., Vol. V, S.I.M. Dep. Mat. Univ. Basilicata, Potenza, 2006, 31-71, math-ph/0512059.
  52. Buchholz D., D'Antoni C., Longo R., Nuclear maps and modular structures. II. Applications to quantum field theory, Comm. Math. Phys. 129 (1990), 115-138.
  53. Buchholz D., Dreyer O., Florig M., Summers S.J., Geometric modular action and spacetime symmetry groups, Rev. Math. Phys. 12 (2000), 475-560, math-ph/9805026.
  54. Buchholz D., Florig M., Summers S.J., An algebraic characterization of vacuum states in Minkowski space. II. Continuity sspects, Lett. Math. Phys. 49 (1999), 337-350, math-ph/9909003.
  55. Buchholz D., Grundling H., Algebraic supersymmetry: a case study, Comm. Math. Phys. 272 (2007), 699-750, math-ph/0604044.
  56. Buchholz D., Grundling H., The resolvent algebra: a new approach to canonical quantum systems, J. Funct. Anal. 254 (2008), 2725-2779, arXiv:0705.1988.
  57. Buchholz D., Lechner G., Modular nuclearity and localization, Ann. Henri Poincaré 5 (2004), 1065-1080, math-ph/0402072.
  58. Buchholz D., Summers S.J., An algebraic characterization of vacuum states in Minkowski space, Comm. Math. Phys. 155 (1993), 449-458.
  59. Buchholz D., Summers S.J., An algebraic characterization of vacuum states in Minkowski space. III. Reflection maps, Comm. Math. Phys. 246 (2004), 625-641, math-ph/0309023.
  60. Buchholz D., Summers S.J., Warped convolutions: a novel tool in the construction of quantum field theories, in Quantum Field Theory and Beyond, Editors E. Seiler and K. Sibold, World Sci. Publ., Hackensack, NJ, 2008, 107-121, arXiv:0806.0349.
  61. Carey A., Gayral V., Rennie A., Sukochev F., Integration on locally compact noncommutative spaces, arXiv:0912.2817.
  62. Carey A., Neshveyev S., Nest R., Rennie A., Twisted cyclic theory, equivariant KK-theory and KMS states, arXiv:0808.3029.
  63. Carey A., Phillips J., Spectral flow in Fredholm modules, eta invariants and the JLO cocycle, K-Theory 31 (2004), 135-194, math.KT/0308161.
  64. Carey A., Phillips J., Putnam I., Rennie A., Families of type III KMS states on a class of C*-algebras containing On and QN, arXiv:1001.0424.
  65. Carey A., Phillips J., Rennie A., Semi-finite spectral triples associated with graph C*-algebras, in Traces in Number Theory, Geometry and Quantum Fields, Editors S. Albeverio, M. Marcolli, S. Paycha and J. Plazas, Aspects Math., Vol. E38, Friedr. Vieweg, Wiesbaden, 2008, 35-56, arXiv:0707.3853.
  66. Carey A., Phillips J., Rennie A., A noncommutative Atiyah-Patodi-Singer index theorem in KK-theory, arXiv:0711.3028.
  67. Carey A., Phillips J., Rennie A., Twisted cyclic theory and an index theory for the gauge invariant KMS state on Cuntz algebras, arXiv:0801.4605.
  68. Carey A., Phillips J., Rennie A., Semi-finite noncommutative geometry and some applications, preprint ESI 2061, 2008, available at http://www.esi.ac.at/preprints/esi2061.pdf.
  69. Carey A., Phillips J., Rennie A., Sukochev F., The Hochschild class of the Chern character for semi-finite spectral triples, J. Funct. Anal. 213 (2004), 111-153, math.OA/0312073.
  70. Carey A., Phillips J., Rennie A., Sukochev F., The local index formula in semi-finite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), 451-516, math.OA/0411019.
  71. Carey A., Phillips J., Rennie A., Sukochev F., The local index formula in semi-finite von Neumann algebras. II. The even case, Adv. Math. 202 (2006), 517-554, math.OA/0411021.
  72. Carey A., Phillips J., Rennie A., Sukochev F., The Chern character of semi-finite spectral triples, J. Noncommut. Geom. 2 (2008), 141-193, math.OA/0611227.
  73. Carey A., Phillips J., Sukochev F., On unbounded p-summable Fredholm modules, Adv. Math. 151 (2000), 140-163, math.OA/9908091.
  74. Carey A., Phillips J., Sukochev F., Spectral flow and Dixmier traces, Adv. Math. 173 (2003), 68-113, math.OA/0205076.
  75. Carey A., Rennie A., Sedaev A., Sukochev F., The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249 (2007), 253-283, math.OA/0611629.
  76. Carey A., Rennie A., Tong K., Spectral flow invariants and twisted cyclic theory from the Haar state on SUq(2), arXiv:0802.0317.
  77. Carpi S., Hillier R., Kawahigashi Y., Longo R., Spectral triples on the super-Virasoro algebra, arXiv:0811.4128.
  78. Casini H., Huerta M., Entanglement entropy in free quantum field theory, J. Phys. A: Math. Theor. 42 (2010), 504007, 45 pages, arXiv:0905.2562.
  79. Christensen E., Ivan C., Spectral triples for AF C*-algebras and metrics on the Cantor set, J. Operator Theory 56 (2006), 17-46, math.OA/0309044.
  80. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, available at http://www.alainconnes.org/docs/book94bigpdf.pdf.
  81. Connes A., Noncommutative geometry and reality, J. Math. Phys. 36 (1995), 6194-6231.
  82. Connes A., Gravity coupled with matter and the foundations of non-commutative geometry, Comm. Math. Phys. 182 (1996), 155-176, hep-th/9603053.
  83. Connes A., On the spectral characterization of manifolds, arXiv:0810.2088.
  84. Connes A., A unitary invariant in Riemannian geometry, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1215-1242, arXiv:0810.2091.
  85. Connes A., Consani C., Marcolli M., Noncommutative geometry and motives: the thermodynamics of endomotives, Adv. Math. 214 (2007), 761-831, math.QA/0512138.
  86. Connes A., Cuntz J., Quasi-homomorphismes, cohomologie cyclique et positivité, Comm. Math. Phys. 114 (1988), 515-526.
  87. Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, Vol. 55, American Mathematical Society, Providence, RI, 2008, available at http://www.alainconnes.org/docs/bookwebfinal.pdf.
  88. Connes A., Moscovici H., Type III and spectral triples, in Traces in Number Theory, Geometry and Quantum Fields, Editor S. Albeverio, Aspects Math., Vol. E38, Friedr. Vieweg, Wiesbaden, 2008, 57-71, math.OA/0609703.
  89. Connes A., Rovelli C., Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories, Classical Quantum Gravity 11 (1994), 2899-2917, gr-qc/9406019.
  90. Coquereaux R., Noncommutative geometry and theoretical physics, J. Geom. Phys. 6 (1989), 425-490.
  91. Coquereaux R., Noncommutative geometry: a physicist's brief survey, J. Geom. Phys. 11 (1993), 307-324.
  92. Cornelissen G., Marcolli M., Reihani K., Vdovina A., Noncommutative geometry on trees and buildings, in Traces in Number Theory, Geometry and Quantum Fields, Editor S. Albeverio, Aspects Math., Vol. E38, Friedr. Vieweg, Wiesbaden, 2008, 73-98, math.QA/0604114.
  93. Crane L., Categorical geometry and the mathematical foundations of quantum gravity, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 84-98, gr-qc/0602120.
  94. Crane L., What is the mathematical structure of quantum spacetime, arXiv:0706.4452.
  95. Crane L., A pointless model for the continuum as the foundation for quantum gravity, arXiv:0804.0030.
  96. Crane L., Model categories in quantum gravity, arXiv:0810.4492.
  97. D'Andrea F., Quantum groups and twisted spectral triples, math.QA/0702408.
  98. D'Ariano G.-M., Probabilistic theories: what is special about quantum mechanics?, arXiv:0807.4383.
  99. Denicola D., Marcolli M., al Yasri A.-Z., Spin foams and noncommutative geometry, arXiv:1005.1057.
  100. Dawe Martins R., An outlook on quantum gravity from an algebraic perspective, arXiv:1003.4434.
  101. Dimock J., Algebras of local observables on a manifold, Comm. Math. Phys. 77 (1980), 219-228.
  102. Dimock J., Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269 (1982), 133-147.
  103. Doná P., Speziale S., Introductory lectures to loop quantum gravity, arXiv:1007.0402.
  104. Doplicher S., Private conversation, Rome, April 1995.
  105. Doplicher S., Quantum physics, classical gravity and noncommutative spacetime, in XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 324-329.
  106. Doplicher S., Quantum spacetime. New problems in the general theory of fields and particles, Part II, Ann. Inst. H. Poincaré Phys. Théor. 64 (1996), 543-553.
  107. Doplicher S., Spacetime and fields, a quantum texture, in Proceedings of the 37th Karpacz Winter School of Theoretical Physics, 2001, 204-213, hep-th/0105251.
  108. Doplicher S., Fredenhagen K., Roberts J.E., Spacetime quantization induced by classical gravity, Phys. Lett. B 331 (1994), 39-44.
  109. Doplicher S., Fredenhagen K., Roberts J.E., The structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, hep-th/0303037.
  110. Dreyer O., Emergent probabilities in quantum mechanics, quant-ph/0603202.
  111. Dreyer O., Emergent relativity, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, Editor D. Oriti, Cambridge University Press, Cambridge, 2009, 99-110, gr-qc/0604075.
  112. Dreyer O., Classicality in quantum mechanics, J. Phys. Conf. Ser. 67 (2007), 012051, 5 pages, quant-ph/0611076.
  113. Dreyer O., Why things fall, in Proceedings "From Quantum to Emergent Gravity: Theory and Phenomenology", PoS(QG-Ph) (2007), 016, 12 pages, arXiv:0710.4350.
  114. Dreyer O., Early universe cosmology in internal relativity, arXiv:0805.3729.
  115. Dreyer O, Time is not the problem, arXiv:0904.3520.
  116. Emch G., Mathematical and conceptual foundations of 20th century physics, North-Holland Mathematics Studies, Vol. 100, North-Holland Publishing Co., Amsterdam, 1984.
  117. Exel R., Noncommutative Cartan sub-algebras of C*-algebras, arXiv:0806.4143.
  118. Fell J., Doran R., Representations of C*-algebras, locally compact groups and banach *-algebraic bundles, Vols. 1, 2, Academic Press, 1998.
  119. Fleischhack C., Representations of the Weyl algebra in quantum geometry, Comm. Math. Phys. 285 (2009), 67-140, math-ph/0407006.
  120. Fredenhagen K., Observables, superselection sectors and gauge groups, in New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), Editors J. Fröhlich, G. 't Hooft, A. Jaffe, G. Mack, P. Mitter and R. Stora, NATO Adv. Sci. Inst. Ser. B Phys., Vol. 295, Plenum, New York, 1992, 177-194.
  121. Fröhlich J., Grandjean O., Recknagel A., Supersymmetric quantum theory, noncommutative geometry and gravitation, in Symétries Quantiques (Les Houches, 1995), Editors A. Connes, K. Gawedski, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 221-385, hep-th/9706132.
  122. Fröhlich J., Grandjean O., Recknagel A., Supersymmetric quantum theory and non-commutative geometry, Comm. Math. Phys. 203 (1999), 119-184, math-ph/9807006.
  123. Gallavotti G., Pulvirenti M., Classical KMS condition and Tomita-Takesaki theory, Comm. Math. Phys. 46 (1976), 1-9.
  124. Ghez P., Lima R., Roberts J.E., W*-categories, Pacific J. Math. 120 (1985), 79-109.
  125. Gracia-Bondía J., Notes on "quantum gravity" and non-commutative geometry, in Proceedings of the Summer School "New Paths Towards Quantum Gravity" (Holbaek, Denmark), Editors B. Booss-Bavnbek, G. Esposito and M. Lesch, Springer, Berlin, 2010, 3-58, arXiv:1005.1174.
  126. Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Boston, Inc., Boston, MA, 2001.
  127. Grinbaum A., Elements of information-theoretic derivation of the formalism of quantum theory, Intern. J. Quantum Information 1 (2003), 289-300, quant-ph/0306079.
  128. Grinbaum A., The significance of information in quantum theory, Ph.D. Thesis, Ecole Polytechnique, Paris, 2004, quant-ph/0410071.
  129. Grinbaum A., On the notion of reconstruction in quantum theory, quant-ph/0509104.
  130. Guido D, Modular theory for the von Neumann algebras of local quantum physics, arXiv:0812.1511.
  131. Guido D., Longo R., An algebraic spin and statistics theorem, Comm. Math. Phys. 172 (1995), 517-533.
  132. Haag R., Local quantum physics. Fields, particles, algebras, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996.
  133. Haag R., Hugenholz N.M., Winnik M., On the equilibrium states in quantum statistical mechanics, Comm. Math. Phys. 5 (1967), 215-236.
  134. Hall B.C., The Segal-Bargmann "coherent state" transform for compact Lie groups. J. Funct. Anal. 122 (1994), no. 1, 103-151.
  135. Hawking S.W., Black hole explosions?, Nature 248 (1974), 30-31.
  136. Hawking S.W., Particle creation by black holes, Comm. Math. Phys. 43 (1975), 199-220.
  137. Hislop P.D., Longo R., Modular structure of the local observables associated with the free massless scalar field theory, Comm. Math. Phys. 84 (1982), 71-85.
  138. Hollands S., Wald R.M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Comm. Math. Phys. 223 (2001), 289-326, gr-qc/0103074.
  139. Hossenfelder S., Comments on and comments on comments on Verlinde's paper "On the origin of gravity and the laws of Newton", arXiv:1003.1015.
  140. Isham C.J., Quantum logic and the histories approach to quantum theory, J. Math. Phys. 35 (1994), 2157-2185, gr-qc/9308006.
  141. Isham C.J., Quantum logic and decohering histories, in Topics in Quantum Field Theory: Modern Methods in Fundamental Physics, Editor D. Tchrakian, World Scientific, 1995, 30-44, quant-ph/9506028.
  142. Isham C.J., Linden N., Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory, J. Math. Phys. 35 (1994), 5452-5476, gr-qc/9405029.
  143. Isham C.J., Linden N., Continuous histories and the history group in generalized quantum theory, J. Math Phys. 36 (1995), 5392-5408, gr-qc/9503063.
  144. Isham C.J., Linden N., Savvidou K., Schreckenberg S., Continuous time and consistent histories, J. Math. Phys. 39 (1998), 1818-1834, quant-ph/9711031.
  145. Jacobson T., Thermodynamics of spacetime: the Einstein equation of state, Phys. Rev. Lett. 75 (1995), 1260-1263, gr-qc/9504004.
  146. Jaffe A., Non-commutative geometry and mathematical physics, in New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), Editors J. Fröhlich, G. 't Hooft, A. Jaffe, G. Mack, P. Mitter and R. Stora, NATO Adv. Sci. Inst. Ser. B Phys., Vol. 295, Plenum, New York, 295-308.
  147. Jaffe A., Lesniewski A., Osterwalder K., Quantum K-theory. I. The Chern character, Comm. Math. Phys. 118 (1988), 1-14.
  148. Jaffe A., Lesniewski A., Osterwalder K., On super-KMS functionals and entire cyclic cohomology, K-theory 2 (1989), 675-682.
  149. Jaffe A., Stoytchev O., The modular group and super-KMS functionals, in Differential Geometric Methods in Theoretical Physics (Rapallo, 1990), Lecture Notes in Phys., Vol.  375, Springer, Berlin, 1991, 382-384.
  150. Kaad J., Nest R., Rennie A., KK-theory and spectral flow in von Neumann algebras, math.OA/0701326.
  151. Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, Vol. I, Elementary theory, Graduate Studies in Mathematics, Vol. 15, American Mathematical Society, Providence, RI, 1997.
    Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, Vol. II, Advanced theory, Graduate Studies in Mathematics, Vol. 16, American Mathematical Society, Providence, RI, 1997.
  152. Kähler R., Wiesbrock H.-W., Modular theory and the reconstruction of four-dimensional quantum field theories, J. Math. Phys. 42 (2001), 74-86.
  153. Kastler D., Cyclic cocycles from graded KMS functionals, Comm. Math. Phys. 121 (1989), 345-350.
  154. Kastler D. (Editor), The algebraic theory of superselection sectors. Introduction and recent results, World Scientific Publishing Co., Inc., River Edge, NJ, 1990.
  155. Khalkhali M., Lectures in noncommutative geometry, in An Invitation to Noncommutative Geometry, Editors M. Khalkhali and M. Marcolli, World Sci. Publ., Hackensack, NJ, 2008, 169-273, math.QA/0702140.
  156. Khalkahli M., Basic noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009.
  157. Konopka T., Markopoulou F., Constrained mechanics and noiseless subsystems, gr-qc/0601028.
  158. Kopf T., Paschke M., Generally covariant quantum mechanics on noncommutative configuration spaces, J. Math. Phys. 48 (2007), 112101, 15 pages, arXiv:0708.0388.
  159. Kotulek J., Scalar quantum mechanics in (counter)examples, in Book of Abstracts of the 9th International Conference on Squeezed States and Uncertainity Relations (May 2-6, 2005, Besançon), 2005, 190.
  160. Kotulek J., Nontrivial systems and the necessity of the scalar quantum mechanics axioms, J. Math. Phys. 50 (2009), 062101, 14 pages.
  161. Kubo R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan 12 (1957), 570-586.
  162. Lai A., On type II noncommutative geometry and the even JLO character, arXiv:1003.4226.
  163. Landi G., An introduction to noncommutative spaces and their geometries Lecture Notes in Physics, New Series m: Monographs, Vol. 51, Springer-Verlag, Berlin, 1997, hep-th/9701078.
  164. Landsman N.P., C*-algebras and K-theory, Lecture notes 2003-2004, available at http://remote.science.uva.nl/~npl/CK.html.
  165. Lechner G., Polarization-free quantum fields and interaction, Lett. Math. Phys. 64 (2003), 137-154, hep-th/0303062.
  166. Lechner G., On the existence of local observables in theories with a factorizing S-matrix, J. Phys. A: Math. Gen. 38 (2005), 3045-3056, math-ph/0405062.
  167. Lechner G., Towards the construction of quantum field theories from a factorizing S-matrix, in Rigorous Quantum Field Theory, Progr. Math., Vol. 251, Birkhäuser, Basel, 2007, 175-197, hep-th/0502184.
  168. Lechner G., Construction of quantum field theories with factorizing S-matrices, Comm. Math. Phys. 277 (2008), 821-860, math-ph/0601022.
  169. Lechner G., On the construction of quantum field theories with factorizing S-matrices, Ph.D. Thesis, Göttingen University, 2006, math-ph/0611050.
  170. Lewandowski J., Oko ów A., Sahlmann H., Thiemann T., Uniqueness of diffeomorphism invariant states on holonomy-flux algebras, Comm. Math. Phys. 267 (2006), 703-733, gr-qc/0504147.
  171. Li B.R., Introduction to operator algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
  172. Lledó F., Massless relativistic wave equations and quantum field theory, Ann. Henri Poincaré 5 (2004), 607-670, math-ph/0303031.
  173. Lledó F., Modular theory by example, arXiv:0901004.
  174. Longo R., A simple proof of the existence of modular automorphism in approximately finite dimensional von Neumann algebras, Pac. J. Math. 75 (1978), 199-205.
  175. Longo R., Algebraic and modular structure of von Neumann algebras of physics, in Operator Algebras and Applications, Part 2 (Kingston, Ont., 1980), Proc. Sympos. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 551-566.
  176. Longo R., Private conversation, Rome, April, 1995.
  177. Longo R., Notes for a quantum index theorem, Comm. Math. Phys. 222 (2001), 45-96, math.OA/0003082.
  178. Lord S., Riemannian geometries, math-ph/0010037.
  179. Longo R., Martinetti P., Rehren K.-H., Geometric modular action for disjoint intervals and boundary conformal field theory, arXiv:0912.1106.
  180. Martin P.C., Schwinger J., Theory of many-particle systems. I, Phys. Rev. 115 (1959), 1342-1373.
  181. Martinetti P., Rovelli C., Diamond's temperature: Unruh effect for bounded trajectories and thermal time hypothesis, Classical Quantum Gravity 20 (2003), 4919-4931, gr-qc/0212074.
  182. Martinetti P., A brief remark on Unruh effect and causality, J. Phys. Conf. Ser. 68 (2007), 012027, 4 pages, gr-qc/0401116.
  183. Martinetti P., Conformal mapping of Unruh temperature, Modern Phys. Lett. A 24 (2009), 1473-1483, arXiv:0803.1538.
  184. Mauro D., A new quantization map, Phys. Lett. A 315 (2003), 28-35, quant-ph/0305063.
  185. Mesland B., Unbounded bivariant K-theory and correspondences in noncommutative geometry, arXiv:0904.4383.
  186. Mitchener P.D., C*-categories, Proc. Lond. Math. Soc. 84 (2002), 375-404.
  187. Morchio G., Strocchi F., The Lie-Rinehart universal Poisson algebra of classical and quantum mechanics, Lett. Math. Phys. 86 (2008), 135-150.
  188. Morchio G., Strocchi F., The noncommutative Poisson algebra of classical and quantum mechanics, arXiv:0805.2870.
  189. Morchio G., Strocchi F., Classical and quantum mechanics from the universal Poisson-Rinehart algebra of a manifold, arXiv:0901.0870.
  190. Morton J., Extended TQFT's and quantum gravity, Ph.D. Thesis, University of California Riverside, 2007, arXiv:0710.0032.
  191. Moscovici H., Local index formula and twisted spectral triples, arXiv:0902.0835.
  192. Mund J., The Bisognano-Wichmann theorem for massive theories, Ann. Henri Poincaré 2 (2001), 907-926, hep-th/0101227.
  193. Mund J., Modular localization of massive particles with "any" spin in d=2+1, J. Math. Phys. 44 (2003), 2037-2057, hep-th/0208195.
  194. Mund J., The spin-statistics theorem for anyons and plektons in d=2+1, Comm. Math. Phys. 286 (2009), 1159-1180, arXiv:0801.3621.
  195. Mund J., The CPT and Bisognano-Wichmann theorems for anyons and plektons in d=2+1, Comm. Math. Phys. 294 (2010), 505-538, arXiv:0902.4434.
  196. Mund J., Schroer B., Yngvason J., String-localized quantum fields and modular localization, Comm. Math. Phys. 268 (2006), 621-672, math-ph/0511042.
  197. Ojima I., Micro-macro duality in quantum physics, in Stochastic Analysis: Classical and Quantum, Editor T. Hida, World Sci. Publ., Hackensack, NJ, 2005, 143-161, math-ph/0502038.
  198. Ojima I., Micro-macro duality and emergence of macroscopic levels, in Quantum Bio-Informatics: From Quantum Information to Bio-Informatics, Editors L. Accardi, W. Freudenberg and M. Ohya, QP-PQ: Quantum Probab. White Noise Anal., Vol. 21, World Sci. Publ., Hackensack, NJ, 2008, 217-228, arXiv:0705.2945.
  199. Ojima I., Takeori M., How to observe quantum fields and recover them from observational data? Takesaki duality as a micro-macro duality, Open Syst. Inf. Dyn. 14 (2007), 307-318, math-ph/0502038.
  200. Padmanabhan T., Thermodynamical aspects of gravity: new insights, arXiv:911.5004.
  201. Paschke M., Time evolutions in quantum mechanics and (Lorentzian) geometry, math-ph/0301040.
  202. Paschke M., Conceptual and mathematical aspects of quantum mechanics, Lectures Notes, 2009, available at www.math.slu.cz/studmat/HostProf/PaschkeZS0809.pdf.
  203. Paschke M., Rennie A., Verch R., Lorentzian spectral triples, in preparation.
  204. Paschke M., Sitarz A., Equivariant Lorentzian spectral triples, math-ph/0611029.
  205. Paschke M., Verch R., Local covariant quantum field theory over spectral geometries, Classical Quantum Gravity 21 (2004), 5299-5316, gr-qc/0405057.
  206. Paschke M., Verch R., Globally hyperbolic noncommutative geometries, in preparation.
  207. Pask D., Rennie A., The noncommutative geometry of graph C*-algebras. I. The index theorem, J. Funct. Anal. 233 (2006), 92-134, math.FA/0508025.
  208. Pinamonti N., On localization and position operators in Möbius-covariant theories, Rev. Math. Phys. 19 (2007), 385-403, math-ph/0610070.
  209. Renault J., Cartan subalgebras in C*-algebras, Irish Math. Soc. Bull. 61 (2008), 29-63, arXiv:0803.2284.
  210. Rennie A., Commutative geometries are spin manifolds, Rev. Math. Phys. 13 (2001), 409-464, math-ph/9903021.
  211. Rennie A., Spectral triples: examples and applications, Notes for lectures, International Workshop on Non-commutative Geometry and Physics (Keio University Yokohama, 2009), available at http://www.tuhep.phys.tohoku.ac.jp/NCG-P/workshop2009/Japan-feb-09.pdf.
  212. Rennie A., Várilly J.C., Reconstruction of manifolds in noncommutative geometry, math.OA/0610418.
  213. Rennie A., Várilly J.C., Orbifolds are not commutative geometries, math.OA/0703719.
  214. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004, available at http://www.cpt.univ-mrs.fr/~rovelli/book.ps.
  215. Rovelli C., Relational quantum mechanics, Internat. J. Theoret. Phys. 35 (1996), 1637-1678, quant-ph/9609002.
  216. Rovelli C., A new look at loop quantum gravity, arXiv:1004.1780.
  217. Rovelli C., Smerlak M., Thermal time and the Tolman-Ehrenfest effect: temperature as the "speed of time", arXiv:1005.2985.
  218. Rovelli C., Vidotto F., Single particle in quantum gravity and BGS entropy of a spin network, Phys. Rev. D 81 (2010), 044038, 9 pages, arXiv:0905.2983.
  219. Saffary T., On the generator of massive modular groups, Lett. Math. Phys. 77 (2006), 235-248, math-ph/0601036.
  220. Sahlmann H., Loop quantum gravity - a short review, arXiv:1001.4188.
  221. Savvidou N., The action operator for continuous-time histories, J. Math. Phys. 40 (1999), 5657-5674, gr-qc/9811078.
  222. Savvidou N., Continuous time in consistent histories, Ph.D. Thesis, Imperial College, 1999, gr-qc/9912076.
  223. Scheiber U., Spectral triple, in n-Lab wiki, http://ncatlab.org/nlab/show/spectral+triple.
  224. Schreiber U., Connes on spectral geometry of the standard model I, II, III, in n-Category Café blog, http://golem.ph.utexas.edu/category/2006/09/connes_on_spectral_geometry_of.html.
  225. Schroer B., Wigner representation theory of the Poincaré group, localization, statistics and the S-matrix, Nuclear Phys. B 499 (1997), 519-546, hep-th/9608092.
  226. Schroer B., Modular wedge localization and the d=1+1 formfactor program, Ann. Physics 275 (1999), 190-223, hep-th/9712124.
  227. Schroer B., Localization and the interface between quantum mechanics, quantum field theory and quantum gravity, arXiv:0711.4600.
  228. Schroer B., A critical look at 50 years particle theory from the perspective of the crossing property, arXiv:0905.4006.
  229. Schroer B., Bondi-Metzner-Sachs Symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy, arXiv:0905.4435.
  230. Schroer B., Geometry and localization, a metaphorically related pair, arXiv:0906.2067.
  231. >Schroer B., Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility), Stud. Hist. Philos. Mod. Phys. 41 (2010), 104-127, arXiv:0912.2874.
  232. Schroer B., Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II (The search of the interface between QFT and QG), arXiv:0912.2886.
  233. Schroer B., Wiesbrock H.-W., Modular theory and geometry, Rev. Math. Phys. 12 (2000), 139-158, math-ph/9809003.
  234. Schroer B., Wiesbrock H.-W., Modular constructions of quantum field theories with interactions, Rev. Math. Phys. 12 (2000), 301-326, hep-th/9812251.
  235. Sewell G., Relativity of temperature and the Hawking effect, Phys. Lett. A 79 (1980), 23-24.
  236. Sewell G., Quantum fields on manifolds: PCT and gravitationally induced thermal states, Ann. Physics 141 (1982), 201-224.
  237. Smerlak M., Rovelli C., Relational EPR, Found. Phys. 37 (2007), 427-445, quant-ph/0604064.
  238. Stratila S., Modular theory in operator algebras, Abacus Press, Tunbridge Wells, 1981.
  239. Stratila S., Zsidó L., Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
  240. Strohmaier A., On noncommutative and pseudo-Riemannian geometry, J. Geom. Phys. 56 (2006), 175-195, math-ph/0110001.
  241. Summers S.J., Tomita-Takesaki modular theory, in Encyclopedia of Mathematical Physics, Editors J.-P. Françoise, G. Naber and T.S. Tsun, Acacemic Press, 2006, 251-257, math-ph/0511034.
  242. Summers S.J., Yet more ado about nothing: the remarkable relativistic vacuum state, arXiv:0802.1854.
  243. Summers S.J., White R.K., On deriving space-time from quantum observables and states, Comm. Math. Phys. 237 (2003), 203-220, hep-th/0304179.
  244. Sunder V.S., An invitation to von Neumann algebras, Springer-Verlag, New York, 1987.
  245. Takesaki M., Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin - New York, 1970.
  246. Takesaki M., Theory of operator algebras. I, Operator Algebras and Non-commutative Geometry, Vol. 5, Springer-Verlag, Berlin, 2002.
    Takesaki M., Theory of operator algebras. II, Operator Algebras and Non-commutative Geometry, Vol. 6, Springer-Verlag, Berlin, 2003.
    Takesaki M., Theory of operator algebras. III, Operator Algebras and Non-commutative Geometry, Vol. 8, Springer-Verlag, Berlin, 2003.
  247. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  248. Tomita M., Quasi standard von Neumann algebras, Preprint, 1967.
  249. Tomita M., On canonical forms of von Neumann algebras, in Fifth Functional Analysis Sympos (Tôhoku Univ., Sendai, 1967), Math. Inst., Tohoku Univ., Sendai, 1967, 101-102.
  250. Unruh W., Notes on black hole evaporation, Phys. Rev. D 14 (1976), 870-892.
  251. van Suijlekom W.D., The noncommutative Lorentzian cylinder as an isospectral deformation, J. Math. Phys. 45 (2004), 537-556, arXiv:math-ph/0310009.
  252. Várilly J.C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
  253. Várilly J.C., Gracia-Bondía J.M., Connes' noncommutative differential geometry and the standard model, J. Geom. Phys. 12 (1993), 223-301.
  254. Verlinde E., On the origin of gravity and the laws of Newton, arXiv:1001.0785.
  255. Verch R., A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework, Comm. Math. Phys. 223 (2001), 261-288, math-ph/0102035.
  256. Weinstein A., The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.
  257. Wiesbrock H.-W., Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras, Comm. Math. Phys. 158 (1993), 537-543.
  258. Wiesbrock H.-W., Modular intersections of von Neumann algebras in quantum field theory, Comm. Math. Phys. 193 (1998), 269-285.
  259. Zeh H., The program of decoherence: ideas and concepts, in Decoherence and the Appearance of a Classical World in Quantum Theory, Editors D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. Stamatescu and H. Zeh, Springer, 1995, 5-34, quant-ph/9506020.
  260. Zurek W.H., Decoherence, einselection, and the quantum origins of the classical, Rev. Modern Phys. 75 (2003), 715-775, quant-ph/0105127.

Previous article   Next article   Contents of Volume 6 (2010)