Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 062, 70 pages      arXiv:1004.2127      http://dx.doi.org/10.3842/SIGMA.2010.062
Contribution to the Special Issue “Noncommutative Spaces and Fields”

Gauge Theories on Deformed Spaces

Daniel N. Blaschke a, Erwin Kronberger b, René I.P. Sedmik b and Michael Wohlgenannt b
a) Faculty of Physics, University of Vienna, Boltzmanngasse 5 A-1090 Vienna, Austria
b) Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

Received April 13, 2010, in final form July 14, 2010; Published online August 04, 2010

Abstract
The aim of this review is to present an overview over available models and approaches to non-commutative gauge theory. Our main focus thereby is on gauge models formulated on flat Groenewold-Moyal spaces and renormalizability, but we will also review other deformations and try to point out common features. This review will by no means be complete and cover all approaches, it rather reflects a highly biased selection.

Key words: noncommutative geometry; noncommutative field theory; gauge field theories; renormalization.

pdf (973 kb)   ps (584 kb)   tex (258 kb)

References

  1. Schrödinger E., Über die Unanwendbarkeit der Geometrie im Kleinen, Naturwiss. 22 (1934), 518-520.
  2. Heisenberg W., Über die in der Theorie der Elementarteilchen auftretende universelle Länge, Ann. Physics 32 (1938), 20-33.
  3. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.
  4. Snyder H.S., The electromagnetic field in quantized space-time, Phys. Rev. 72 (1947), 68-71.
  5. Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, hep-th/0303037.
  6. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  7. Connes A., Noncommutative geometry and the standard model with neutrino mixing, J. High Energy Phys. 2006 (2006), no. 11, 081, 19 pages, hep-th/0608226.
  8. Barrett J.W., Lorentzian version of the noncommutative geometry of the Standard Model of particle physics, J. Math. Phys. 48 (2007), 012303, 7 pages, hep-th/0608221.
  9. Madore J., The commutative limit of a matrix geometry, J. Math. Phys. 32 (1991), 332-335.
  10. Madore J., The fuzzy sphere, Classical Quantum Gravity 9 (1992), 69-87.
  11. Lukierski J., Ruegg H., Nowicki A., Tolstoi V.N., q-deformation of Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
  12. Majid S., Ruegg H., Bicrossproduct structure of κ-Poincaré group and non-commutative geometry, Phys. Lett. B 334 (1994), 348-354, hep-th/9405107.
  13. Dimitrijevic M., Jonke L., Möller L., Tsouchnika E., Wess J., Wohlgenannt M., Deformed field theory on κ-spacetime, Eur. Phys. J. C 31 (2003), 129-138, hep-th/0307149.
  14. Reshetikhin N., Takhtadzhyan L., Faddeev L., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  15. Lorek A., Schmidke W.B., Wess J., SUq(2) covariant ^R-matrices for reducible representations, Lett. Math. Phys. 31 (1994), 279-288.
  16. Harvey J.A., Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076.
  17. Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207-299, hep-th/0109162.
  18. Paniak L.D., Szabo R.J., Lectures on two-dimensional noncommutative gauge theory. I. Classical aspects, hep-th/0302195.
  19. Paniak L.D., Szabo R.J., Lectures on two-dimensional noncommutative gauge theory, in Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys., Vol. 662, Springer, Berlin, 2005, 205-237, hep-th/0304268.
  20. Bahns D., Schwinger functions in noncommutative quantum field theory, arXiv:0908.4537.
  21. Grosse H., Lechner G., Noncommutative deformations of Wightman quantum field theories, J. High Energy Phys. 2008 (2008), no. 9, 131, 29 pages, arXiv:0808.3459.
  22. Groenewold H.J., On the principles of elementary quantum mechanics, Physica 12 (1946), 405-460.
  23. Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949), 99-124.
  24. Filk T., Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996), 53-58.
  25. Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020, 31 pages, hep-th/9912072.
  26. Chepelev I., Roiban R., Convergence theorem for non-commutative Feynman graphs and renormalization, J. High Energy Phys. 2001 (2001), no. 3, 001, 72 pages, hep-th/0008090.
  27. Grosse H., Wulkenhaar R., Renormalisation of φ4-theory on noncommutative R2 in the matrix base, J. High Energy Phys. 2003 (2003), no. 12, 019, 26 pages, hep-th/0307017.
  28. Grosse H., Wulkenhaar R., Renormalisation of φ4-theory on noncommutative R4 in the matrix base, Comm. Math. Phys. 256 (2005), 305-374, hep-th/0401128.
  29. Langmann E., Szabo R.J., Duality in scalar field theory on noncommutative phase spaces, Phys. Lett. B 533 (2002), 168-177, hep-th/0202039.
  30. Magnen J., Rivasseau V., Constructive φ4 field theory without tears, Ann. Henri Poincaré 9 (2008), 403-424, arXiv:0706.2457.
  31. Gurau R., Magnen J., Rivasseau V., Tanasa A., A translation-invariant renormalizable non-commutative scalar model, Comm. Math. Phys. 287 (2009), 275-290, arXiv:0802.0791.
  32. de Goursac A., Wallet J.-C., Wulkenhaar R., Noncommutative induced gauge theory, Eur. Phys. J. C 51 (2007), 977-987, hep-th/0703075.
  33. Wohlgenannt M., Induced gauge theory on a noncommutative space, Fortschr. Phys. 56 (2008), 547-551.
  34. Blaschke D.N., Grosse H., Schweda M., Non-commutative U(1) gauge theory on RΘ4 with oscillator term and BRST symmetry, Europhys. Lett. 79 (2007), 61002, 3 pages, arXiv:0705.4205.
  35. Blaschke D.N., Grosse H., Kronberger E., Schweda M., Wohlgenannt M., Loop calculations for the non-commutative U(1) gauge field model with oscillator term, Eur. Phys. J. C 67 (2010), 575-582, arXiv:0912.3642.
  36. Buric M., Grosse H., Madore J., Gauge fields on noncommutative geometries with curvature, J. High Energy Phys. 2010 (2010), no. 7, 010, 18 pages, arXiv:1003.2284.
  37. Buric M., Wohlgenannt M., Geometry of the Grosse-Wulkenhaar model, J. High Energy Phys. 2010 (2010), no. 3, 053, 17 pages, arXiv:0902.3408.
  38. Blaschke D.N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., Translation-invariant models for non-commutative gauge fields, J. Phys. A: Math. Theor. 41 (2008), 252002, 7 pages, arXiv:0804.1914.
  39. Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P., One-loop calculations for a translation invariant non-commutative gauge model, Eur. Phys. J. C 62 (2009), 433-443, arXiv:0901.1681.
  40. Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P., Improved localization of a renormalizable non-commutative translation invariant U(1) gauge model, Europhys. Lett. 86 (2009), 51002, 6 pages, arXiv:0903.4811.
  41. Blaschke D.N., Rofner A., Sedmik R.I.P., One-loop calculations and detailed analysis of the localized non-commutative 1/p2 U(1) gauge model, SIGMA 6 (2010), 037, 20 pages, arXiv:0908.1743.
  42. Vilar L.C.Q., Ventura O.S., Tedesco D.G., Lemes V.E.R., On the renormalizability of noncommutative U(1) gauge theory - an algebraic approach, J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages, arXiv:0902.2956.
  43. Blaschke D.N., Rofner A., Sedmik R.I.P., Wohlgenannt M., On non-commutative U*(1) gauge models and renormalizability, arXiv:0912.2634.
  44. Gribov V.N., Quantization of non-Abelian gauge theories, Nuclear Phys. B 139 (1978), 1-19.
  45. Zwanziger D., Local and renormalizable action from the Gribov horizon, Nuclear Phys. B 323 (1989), 513-544.
  46. Zwanziger D., Renormalizability of the critical limit of lattice gauge theory by BRS invariance, Nuclear Phys. B 399 (1993), 477-513.
  47. Baulieu L., Sorella S.P., Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way, Phys. Lett. B 671 (2009), 481-485, arXiv:0808.1356.
  48. Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages, hep-th/9908142.
  49. Jurco B., Möller L., Schraml S., Schupp P., Wess J., Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C 21 (2001), 383-388, hep-th/0104153.
  50. Barnich G., Brandt F., Grigoriev M., Local BRST cohomology and Seiberg-Witten maps in noncommutative Yang-Mills theory, Nuclear Phys. B 677 (2004), 503-534, hep-th/0308092.
  51. Calmet X., Jurco B., Schupp P., Wess J., Wohlgenannt M., The standard model on non-commutative space-time, Eur. Phys. J. C 23 (2002), 363-376, hep-ph/0111115.
  52. Melic B., Passek-Kumericki K., Trampetic J., Schupp P., Wohlgenannt M., The standard model on non-commutative space-time: strong interactions included, Eur. Phys. J. C 42 (2005), 499-504, hep-ph/0503064.
  53. Melic B., Passek-Kumericki K., Trampetic J., Schupp P., Wohlgenannt M., The standard model on non-commutative space-time: electroweak currents and Higgs sector, Eur. Phys. J. C 42 (2005), 483-497, hep-ph/0502249.
  54. Buric M., Radovanovic V., Trampetic J., The one-loop renormalization of the gauge sector in the θ-expanded noncommutative standard model, J. High Energy Phys. 2007 (2007), no. 3, 030, 17 pages, hep-th/0609073.
  55. Buric M., Radovanovic V., The one-loop effective action for quantum electrodynamics on noncommutative space, J. High Energy Phys. 2002 (2002), no. 10, 074, 17 pages, hep-th/0208204.
  56. Bichl A.A., Grimstrup J.M., Grosse H., Popp L., Schweda M., Wulkenhaar R., Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, J. High Energy Phys. 2001 (2001), no. 6, 013, 15 pages, hep-th/0104097.
  57. Wulkenhaar R., Non-renormalizability of θ-expanded non-commutative QED, J. High Energy Phys. 2002 (2002), no. 3, 024, 35 pages, hep-th/0112248.
  58. Martín C.P., Tamarit C., Renormalisability of the matter determinants in noncommutative gauge theory in the enveloping-algebra formalism, Phys. Lett. B 658 (2008), 170-173, arXiv:0706.4052.
  59. Tamarit C., Trampetic J., Noncommutative fermions and quarkonia decays, Phys. Rev. D 79 (2009), 025020, 15 pages, arXiv:0812.1731.
  60. Martín C.P., Tamarit C., Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, J. High Energy Phys. 2009 (2009), no. 12, 042, 18 pages, arXiv:0910.2677.
  61. Trampetic J., Rare and forbidden decays, Acta Phys. Polon. B 33 (2002), 4317-4372, hep-ph/0212309.
  62. Melic B., Passek-Kumericki K., Trampetic J., K→πγ decay and space-time noncommutativity, Phys. Rev. D 72 (2005), 057502, 3 pages hep-ph/0507231.
  63. Buric M., Latas D., Radovanovic V., Trampetic J., Nonzero Z→γγ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007), 097701, 4 pages.
  64. Schupp P., Trampetic J., Wess J., Raffelt G., The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds, Eur. Phys. J. C 36 (2004), 405-410, hep-ph/0212292.
  65. Horvat R., Trampetic J., Constraining spacetime noncommutativity with primordial nucleosynthesis, Phys. Rev. D 79 (2009), 087701, 4 pages, arXiv:0901.4253.
  66. Schupp P., You J., UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, J. High Energy Phys. 2008 (2008), no. 8, 107, 10 pages, arXiv:0807.4886.
  67. Raasakka M., Tureanu A., On UV/IR mixing via Seiberg-Witten map for noncommutative QED, Phys. Rev. D 81 (2010), 125004, 8 pages, arXiv:1002.4531.
  68. Slavnov A.A., Consistent non-commutative quantum gauge theories?, Phys. Lett. B 565 (2003), 246-252, hep-th/0304141.
  69. Slavnov A.A., A gauge-invariant U(1)-model on a noncommutative plane in an axial gauge, Theoret. and Math. Phys. 140 (2004), 1222-1228.
  70. Blaschke D.N., Hohenegger S., Schweda M., Divergences in non-commutative gauge theories with the Slavnov term, J. High Energy Phys. 2005 (2005), no. 11, 041, 29 pages, hep-th/0510100.
  71. Blaschke D.N., Gieres F., Piguet O., Schweda M., A vector supersymmetry in noncommutative U(1) gauge theory with the Slavnov term, J. High Energy Phys. 2006 (2006), no. 5, 059, 16 pages, hep-th/0604154.
  72. Blaschke D.N., Hohenegger S., A generalization of Slavnov-extended non-commutative gauge theories, J. High Energy Phys. 2007 (2007), no. 8, 032, 21 pages, arXiv:0705.3007.
  73. Dimitrijevic M., Meyer F., Möller L., Wess J., Gauge theories on the κ-Minkowski spacetime, Eur. Phys. J. C 36 (2004), 117-126, hep-th/0310116.
  74. Dimitrijevic M., Jonke L., Möller L., U(1) gauge field theory on κ-Minkowski space, J. High Energy Phys. 2005 (2005), no. 9, 068, 15 pages, hep-th/0504129.
  75. Bolokhov P.A., Pospelov M., Low-energy constraints on κ-Minkowski extension of the Standard Model, Phys. Lett. B 677 (2009), 160-163, arXiv:0807.1522.
  76. Harikumar E., Maxwell's equations on the κ-Minkowski spacetime and electric-magnetic duality, Europhys. Lett. 90 (2010), 21001, 6 pages, arXiv:1002.3202.
  77. Klimcík C., Gauge theories on the noncommutative sphere, Comm. Math. Phys. 199 (1998) 257-279, hep-th/9710153.
  78. Balachandran A.P., Vaidya S., Instantons and chiral anomaly in fuzzy physics, Internat. J. Modern Phys. A 16 (2001), 17-39, hep-th/9910129.
  79. Karabali D., Nair V.P., Polychronakos A.P., Spectrum of Schrödinger field in a noncommutative magnetic monopole, Nuclear Phys. B 627 (2002), 565-579, hep-th/0111249.
  80. Iso S., Kimura Y., Tanaka K., Wakatsuki K., Noncommutative gauge theory on fuzzy sphere from matrix model, Nuclear Phys. B 604 (2001), 121-147, hep-th/0101102.
  81. Steinacker H., Quantized gauge theory on the fuzzy sphere as random matrix model, Nuclear Phys. B 679 (2004), 66-98, hep-th/0307075.
  82. Castro-Villarreal P., Delgadillo-Blando R., Ydri B., A gauge-invariant UV-IR mixing and the corresponding phase transition for U(1) fields on the fuzzy sphere, Nuclear Phys. B 704 (2005), 111-153, hep-th/0405201.
  83. O'Connor D., Ydri B., Monte Carlo simulation of a NC gauge theory on the fuzzy sphere, J. High Energy Phys. 2006 (2006), no. 11, 016, 37 pages, hep-lat/0606013.
  84. Alexanian G., Balachandran A.P., Immirzi G., Ydri B., Fuzzy CP2, J. Geom. Phys. 42 (2002), 28-53, hep-th/0103023.
  85. Grosse H., Steinacker H., Finite gauge theory on fuzzy CP2, Nuclear Phys. B 707 (2005), 145-198, hep-th/0407089.
  86. Boulatov D.V., Quantum deformation of lattice gauge theory, Comm. Math. Phys. 186 (1997), 295-322, hep-th/9604117.
  87. Majid S., Diagrammatics of braided group gauge theory, J. Knot Theory Ramifications 8 (1999), 731-771, q-alg/9603018.
  88. Mesref L., A map between q-deformed noncommutative and ordinary gauge theories, New J. Phys. 5 (2003), 7.1-7.9, hep-th/0209005.
  89. Schraml S., Non-Abelian gauge theory on q-quantum spaces, hep-th/0208173.
  90. Meyer F., Steinacker H., Gauge field theory on the Eq(2)-covariant plane, Internat. J. Modern Phys. A 19 (2004), 3349-3375, hep-th/0309053.
  91. Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., A large-N reduced model as superstring, Nuclear Phys. B 498 (1997), 467-491, hep-th/9612115.
  92. Jack I., Jones D.R.T., Ultra-violet finiteness in noncommutative supersymmetric theories, New J. Phys. 3 (2001), 19.1-19.8, hep-th/0109195.
  93. Matusis A., Susskind L., Toumbas N., The IR/UV connection in the non-commutative gauge theories, J. High Energy Phys. 2000 (2000), no. 12, 002, 18 pages, hep-th/0002075.
  94. Sheikh-Jabbari M.M., One loop renormalizability of supersymmetric Yang-Mills theories on noncommutative two-torus, J. High Energy Phys. 1999 (1999), no. 6, 015, 16 pages, hep-th/9903107.
  95. Girotti H.O., Gomes M., Rivelles V.O., da Silva A.J., A consistent noncommutative field theory: the Wess-Zumino model, Nuclear Phys. B 587 (2000), 299-310, hep-th/0005272.
  96. Bichl A.A., Grimstrup J., Grosse H., Popp L., Schweda M., Wulkenhaar R., The superfield formalism applied to the noncommutative Wess-Zumino model, J. High Energy Phys. 2000 (2000), no. 10, 046, 19 pages, hep-th/0007050.
  97. Zanon D., Noncommutative N=1,2 super U(N) Yang-Mills: UV/IR mixing and effective action results at one loop, Phys. Lett. B 502 (2001), 265-273, hep-th/0012009.
  98. Ferrara S., Lledó M.A., Some aspects of deformations of supersymmetric field theories, J. High Energy Phys. 2000 (2000), no. 5, 008, 22 pages, hep-th/0002084.
  99. Bichl A.A., Ertl M., Gerhold A., Grimstrup J.M., Popp L., Putz V., Schweda M., Grosse H., Wulkenhaar R., Non-commutative U(1) super-Yang-Mills theory: perturbative self-energy corrections, Internat. J. Modern Phys. A 19 (2004), 4231-4249, hep-th/0203141.
  100. Ooguri H., Vafa C., The C-deformation of gluino and non-planar diagrams, Adv. Theor. Math. Phys. 7 (2003), 53-85, hep-th/0302109.
  101. Araki T., Ito K., Ohtsuka A., Supersymmetric gauge theories on noncommutative superspace, Phys. Lett. B 573 (2003), 209-216, hep-th/0307076.
  102. Ooguri H., Vafa C., Gravity induced C-deformation, Adv. Theor. Math. Phys. 7 (2004), 405-417, hep-th/0303063.
  103. Ferrari A.F., Girotti H.O., Gomes M., Petrov A.Yu., Ribeiro A.A., Rivelles V.O., da Silva A.J., Towards a consistent noncommutative supersymmetric Yang-Mills theory: superfield covariant analysis, Phys. Rev. D 70 (2004), 085012, 11 pages, hep-th/0407040.
  104. Martín C.P., Tamarit C., Noncommutative N=1 super Yang-Mills, the Seiberg-Witten map and UV divergences, J. High Energy Phys. 2009 (2009), no. 11, 092, 28 pages, arXiv:0907.2437.
  105. Szabo R.J., Symmetry, gravity and noncommutativity, Classical Quantum Gravity 23 (2006), R199-R242, hep-th/0606233.
  106. Rivelles V.O., Noncommutative field theories and gravity, Phys. Lett. B 558 (2003), 191-196, hep-th/0212262.
  107. Yang H.S., Exact Seiberg-Witten map and induced gravity from noncommutativity, Modern Phys. Lett. A 21 (2006), 2637-2647, hep-th/0402002.
  108. Banerjee R., Yang H.S., Exact Seiberg-Witten map, induced gravity and topological invariants in non-commutative field theories, Nuclear Phys. B 708 (2005), 434-450, hep-th/0404064.
  109. Yang H.S., Instantons and emergent geometry, Europhys. Lett. 88 (2009), 31002, 6 pages, hep-th/0608013.
  110. Steinacker H., Emergent gravity from noncommutative gauge theory, J. High Energy Phys. 2007 (2007), no. 12, 049, 36 pages, arXiv:0708.2426.
  111. Grosse H., Steinacker H., Wohlgenannt M., Emergent gravity, matrix models and UV/IR mixing, J. High Energy Phys. 2008 (2008), no. 4, 023, 30 pages, arXiv:0802.0973.
  112. Klammer D., Steinacker H., Fermions and emergent noncommutative gravity, J. High Energy Phys. 2008 (2008), no. 8, 074, 27 pages, arXiv:0805.1157.
  113. Steinacker H., Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models, J. High Energy Phys. 2009 (2009), no. 2, 044, 30 pages, arXiv:0812.3761.
  114. Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman diagrams and effective field theory, Classical Quantum Gravity 23 (2006), 2021-2061, hep-th/0502106.
  115. Freidel L., Livine E.R., 3D quantum gravity and effective noncommutative quantum field theory, Phys. Rev. Lett. 96 (2006), 221301, 4 pages, hep-th/0512113.
  116. Gitman D.M., Vassilevich D.V., Space-time noncommutativity with a bifermionic parameter, Modern Phys. Lett. A 23 (2008), 887-893, hep-th/0701110.
  117. Terashima S., A note on superfields and noncommutative geometry, Phys. Lett. B 482 (2000), 276-282, hep-th/0002119.
  118. Matsubara K., Restrictions on gauge groups in noncommutative gauge theory, Phys. Lett. B 482 (2000), 417-419, hep-th/0003294.
  119. Bars I., Sheikh-Jabbari M.M., Vasiliev M.A., Noncommutative o>*(N) and usp*(2N) algebras and the corresponding gauge field theories, Phys. Rev. D 64 (2001), 086004, 13 pages, hep-th/0103209.
  120. Chaichian M., Presnajder P., Sheikh-Jabbari M.M., Tureanu A., Noncommutative gauge field theories: a no-go theorem, Phys. Lett. B 526 (2002), 132-136, hep-th/0107037.
  121. Bonora L., Schnabl M., Sheikh-Jabbari M.M., Tomasiello A., Noncommutative SO(n) and Sp(n) gauge theories, Nuclear Phys. B 589 (2000), 461-474, hep-th/0006091.
  122. Bietenholz W., Nishimura J., Susaki Y., Volkholz J., A non-perturbative study of 4d U(1) non-commutative gauge theory - the fate of one-loop instability, J. High Energy Phys. 2006 (2006), no. 10, 042, 31 pages, hep-th/0608072.
  123. Nishimura J., Bietenholz W., Susaki Y., Volkholz J., A non-perturbative study of non-commutative U(1) gauge theory, Progr. Theor. Phys. Suppl. (2007), no. 171, 178-183, arXiv:0706.3244.
  124. Aref'eva I.Y., Belov D.M., Koshelev A.S., Rytchkov O.A., UV/IR mixing for noncommutative complex scalar field theory interacting with gauge fields, Nuclear Phys. Proc. Suppl. 102 (2001), 11-17, hep-th/0003176.
  125. Micu A., Sheikh Jabbari M.M., Noncommutative Φ4 theory at two loops, J. High Energy Phys. 2001 (2001), no. 1, 025, 45 pages, hep-th/0008057.
  126. Grimstrup J.M., Grosse H., Popp L., Putz V., Schweda M., Wickenhauser M., Wulkenhaar R., IR-singularities in noncommutative perturbative dynamics?, Europhys. Lett. 67 (2004), 186-190, hep-th/0202093.
  127. Martín C.P., Sánchez-Ruiz D., One-loop UV divergent structure of U(1) Yang-Mills theory on noncommutative R4, Phys. Rev. Lett. 83 (1999), 476-479, hep-th/9903077.
  128. Hayakawa M., Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett. B 478 (2000), 394-400, hep-th/9912094.
  129. Hayakawa M., Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on R4, hep-th/9912167.
  130. Grosse H., Krajewski T., Wulkenhaar R., Renormalization of noncommutative Yang-Mills theories: a simple example, hep-th/0001182.
  131. Martín C.P., Sánchez-Ruiz D., The BRS invariance of noncommutative U(N) Yang-Mills theory at the one-loop level, Nuclear Phys. B 598 (2001), 348-370, hep-th/0012024.
  132. Liao Y., One loop renormalization of spontaneously broken U(2) gauge theory on noncommutative spacetime, J. High Energy Phys. 2001 (2001), no. 11, 067, 39 pages, hep-th/0110112.
  133. Nakajima T., UV/IR mixing and anomalies in noncommutative gauge theories, hep-th/0205058.
  134. Ruiz Ruiz F., Gauge-fixing independence of IR divergences in non-commutative U(1), perturbative tachyonic instabilities and supersymmetry, Phys. Lett. B 502 (2001), 274-278, hep-th/0012171.
  135. Attems M., Blaschke D.N., Ortner M., Schweda M., Stricker S., Weiretmayr M., Gauge independence of IR singularities in non-commutative QFT - and interpolating gauges, J. High Energy Phys. 2005 (2005), no. 7, 071, 10 pages, hep-th/0506117.
  136. Van Raamsdonk M., The meaning of infrared singularities in noncommutative gauge theories, J. High Energy Phys. 2001 (2001), no. 11, 006, 17 pages, hep-th/0110093.
  137. Armoni A., Comments on perturbative dynamics of non-commutative Yang-Mills theory, Nuclear Phys. B 593 (2001), 229-242, hep-th/0005208.
  138. Armoni A., Lopez E., UV/IR mixing via closed strings and tachyonic instabilities, Nuclear Phys. B 632 (2002), 240-256, hep-th/0110113.
  139. Martín C.P., Ruiz Ruiz F., Paramagnetic dominance, the sign of the beta function and UV/IR mixing in non-commutative U(1), Nuclear Phys. B 597 (2001), 197-227, hep-th/0007131.
  140. Landi G., Lizzi F., Szabo R.J., String geometry and the noncommutative torus, Comm. Math. Phys. 206 (1999), 603-637, hep-th/9806099.
  141. Landi G., Lizzi F., Szabo R.J., From large N matrices to the noncommutative torus, Comm. Math. Phys. 217 (2001), 181-201, hep-th/9912130.
  142. Krajewski T., Wulkenhaar R., Perturbative quantum gauge fields on the noncommutative torus, Internat. J. Modern Phys. A 15 (2000), 1011-1029, hep-th/9903187.
  143. Chaichian M., Presnajder P., Sheikh-Jabbari M.M., Tureanu A., Non-commutative standard model: model building, Eur. Phys. J. C 29 (2003), 413-432, hep-th/0107055.
  144. Jurco B., Schupp P., Wess J., Noncommutative gauge theory for Poisson manifolds, Nuclear Phys. B 584 (2000), 784-794, hep-th/0005005.
  145. Wohlgenannt M., Introduction to a non-commutative version of the standard model, hep-th/0302070.
  146. Aschieri P., Jurco B., Schupp P., Wess J., Non-commutative GUTs, standard model and C, P, T, Nuclear Phys. B 651 (2003), 45-70, hep-th/0205214.
  147. Möller L., Second order of the expansions of action functionals of the noncommutative standard model, J. High Energy Phys. 2004 (2004), no. 10, 063, 20 pages, hep-th/0409085.
  148. Alboteanuv A., Ohl T., Ruckl R., The noncommutative standard model at O2), Phys. Rev. D 76 (2007), 105018, 10 pages, arXiv:0707.3595.
  149. Trampetic J., Wohlgenannt M., Comment on the 2nd order Seiberg-Witten maps, Phys. Rev. D 76 (2007), 127703, 4 pages, arXiv:0710.2182.
  150. Bichl A.A., Grimstrup J.M., Popp L., Schweda M., Wulkenhaar R., Deformed QED via Seiberg-Witten map, hep-th/0102103.
  151. Carlson C.E., Carone C.D., Zobin N., Noncommutative gauge theory without Lorentz violation, Phys. Rev. D 66 (2002), 075001, 8 pages, hep-th/0206035.
  152. Martín C.P., Sánchez-Ruiz D., Tamarit C., The noncommutative U(1) Higgs-Kibble model in the enveloping-algebra formalism and its renormalizability, J. High Energy Phys. 2007 (2007), no. 2, 065, 23 pages, hep-th/0612188.
  153. Buric M., Latas D., Radovanovic V., Renormalizability of noncommutative SU(N) gauge theory, J. High Energy Phys. 2006 (2006), no. 2, 046, 13 pages, hep-th/0510133.
  154. Latas D., Radovanovic V., Trampetic J., Non-commutative SU(N) gauge theories and asymptotic freedom, Phys. Rev. D 76 (2007), 085006, 7 pafes, hep-th/0703018.
  155. Buric M., Latas D., Radovanovic V., Trampetic J., Absence of the 4ψ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008), 045031, 7 pages, arXiv:0711.0887.
  156. Martín C.P., C. Tamarit, Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions, Phys. Rev. D 80 (2009), 065023, 6 pages, arXiv:0907.2464.
  157. Banerjee R., Ghosh S., Seiberg-Witten map and the axial anomaly in non-commutative field theory, Phys. Lett. B 533 (2002), 162-167, hep-th/0110177.
  158. Martín C.P., Tamarit C., Noncommutative SU(N) theories, the axial anomaly, Fujikawa's method and the Atiyah-Singer index, Phys. Lett. B 620 (2005), 187-194, hep-th/0504171.
  159. Brandt F., Martín C.P., Ruiz Ruiz F., Anomaly freedom in Seiberg-Witten noncommutative gauge theories, J. High Energy Phys. 2003 (2003), no. 7, 068, 26 pages, hep-th/0307292.
  160. Hewett J.L., Petriello F.J., Rizzo T.G., Signals for non-commutative interactions at linear colliders, Phys. Rev. D 64 (2001), 075012, 23 pages, hep-ph/0010354.
  161. Carlson C.E., Carone C.D., Lebed R.F., Bounding noncommutative QCD, Phys. Lett. B 518 (2001), 201-206, hep-ph/0107291.
  162. Kersting N., (g−2) from noncommutative geometry, Phys. Lett. B 527 (2002), 115-118, hep-ph/0109224.
  163. Carone C.D., Phenomenology of noncommutative field theories, J. Phys. Conf. Ser. 37 (2006), 96-106, hep-ph/0409348.
  164. Minkowski P., Schupp P., Trampetic J., Neutrino dipole moments and charge radii in non-commutative space-time, Eur. Phys. J. C 37 (2004), 123-128, hep-th/0302175.
  165. Emery S., Krüger M., Rant J., Schweda M., Sommer T., Two-dimensional BF model quantized in the axial gauge, Nuovo Cimento A 111 (1998), 1321-1335, hep-th/9609240.
  166. Del Cima O.M., Landsteiner K., Schweda M., Twisted N=4 SUSY algebra in topological models of Schwarz type, Phys. Lett. B 439 (1998), 289-300, hep-th/9806137.
  167. Del Cima O.M., Grimstrup J.M., Schweda M., On the finiteness of a new topological model in D = 3, Phys. Lett. B 463 (1999), 48-56, hep-th/9906146.
  168. Gieres F., Grimstrup J.M., Pisar T., Schweda M., Vector supersymmetry in topological field theories, J. High Energy Phys. 2000 (2000), no. 6, 018, 22 pages, hep-th/0002167.
  169. Batalin I.A., Vilkovisky G.A., Gauge algebra and quantization, Phys. Lett. B 102 (1981), 27-31.
  170. Batalin I.A., Vilkovisky G.A., Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983), 2567-2582.
  171. Piguet O., Sorella S.P., Algebraic renormalization. Perturbative renormalization, symmetries and anomalies, Lecture Notes in Physics. New Series m: Monographs, Vol. 28, Springer-Verlag, Berlin, 1995.
  172. Fischer A., Szabo R.J., Duality covariant quantum field theory on noncommutative Minkowski space, J. High Energy Phys. 2009 (2009), no. 2, 031, 36 pages, arXiv:0810.1195.
  173. Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., Renormalization of noncommutative φ4-theory by multi-scale analysis, Comm. Math. Phys. 262 (2006), 565-594, hep-th/0501036.
  174. Disertori M., Rivasseau V., Two- and three-loop beta function of non-commutative Φ44 theory, Eur. Phys. J. C 50 (2007), 661-671, hep-th/0610224.
  175. Landau L.D., On the quantum theory of fields, in Niels Bohr and the Development of Physics, McGraw-Hill Book Co., New York, N.Y., 1955, 52-69.
  176. Grosse H., Wulkenhaar R., The β-function in duality-covariant non-commutative φ4-theory, Eur. Phys. J. C 35 (2004), 277-282, hep-th/0402093.
  177. Disertori M., Gurau R., Magnen J., Rivasseau V., Vanishing of beta function of non-commutative Φ44 theory to all orders, Phys. Lett. B 649 (2007), 95-102, hep-th/0612251.
  178. Blaschke D.N., Gieres F., Kronberger E., Reis T., Schweda M., Sedmik R.I.P., Quantum corrections for translation-invariant renormalizable non-commutative φ4 theory, J. High Energy Phys. 2008 (2008), no. 11, 074, 16 pages, arXiv:0807.3270.
  179. Madore J., An introduction to noncommutative differential geometry and its physical applications, 2nd ed., London Mathematical Society Lecture Note Series, Vol. 257, Cambridge University Press, Cambridge, 1999.
  180. Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991.
  181. Sobreiro R.F., Sorella S.P., Introduction to the Gribov ambiguities in Euclidean Yang-Mills theories, hep-th/0504095.
  182. Grumiller D., Rebhan A., Vassilevich D. (Editors), Fundamental interactions - a memorial volume for Wolfgang Kummer, World Scientific, Singapore, 2009.
  183. van Baal P., QCD in a finite volume, hep-ph/0008206.
  184. Dudal D., Sorella S.P., Vandersickel N., Verschelde H., Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D 79 (2009), 121701, 5 pages, arXiv:0904.0641.
  185. Dudal D., Gracey J., Sorella S.P., Vandersickel N., Verschelde H., A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008), 065047, 30 pages, arXiv:0806.4348.
  186. Ryder L.H., Quantum field theory, 2nd ed., Cambridge University Press, Cambridge, 1996.
  187. Boresch A., Emery S., Moritsch O., Schweda M., Sommer T., Zerrouki H., Applications of noncovariant gauges in the algebraic renormalization procedure, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
  188. Sedmik R.I.P., On the development of non-commutative translation-invariant quantum gauge field models, PhD Thesis, Vienna University of Technology, 2009, available at http://media.obvsg.at/AC07806220.
  189. Aigner F., Hillbrand M., Knapp J., Milovanovic G., Putz V., Schöfbeck R., Schweda M., Technical remarks and comments on the UV/IR-mixing problem of a noncommutative scalar quantum field theory, Czechoslovak J. Phys. 54 (2004), 711-719, hep-th/0302038.
  190. Denk S., Schweda M., Time ordered perturbation theory for non-local interactions: applications to NCQFT, J. High Energy Phys. 2003 (2003), no. 9, 032, 22 pages, hep-th/0306101.
  191. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., Ultraviolet finite quantum field theory on quantum spacetime, Comm. Math. Phys. 237 (2003), 221-241, hep-th/0301100.
  192. Blaschke D.N., Kronberger E., Rofner A., Schweda M., Sedmik R.I.P., Wohlgenannt M., On the problem of renormalizability in non-commutative gauge field models - a critical review, Fortschr. Phys. 58 (2010), 364-372, arXiv:0908.0467.
  193. Rofner A., Investigations on the renormalizability of a non-commutative U(1) gauge theory, PhD Thesis, Vienna University of Technology, 2009, available at http://media.obvsg.at/AC07806222.
  194. Blaschke D.N., Kronberger E., Sedmik R., Wohlgenannt M., On the renormalizability of a non-commutative gauge model with soft-breaking, work in progress.
  195. Denk S., Perturbative aspects of non-local and non-commutative quantum field theories, PhD Thesis, Vienna University of Technology, 2004, available at http://media.obvsg.at/AC04351727-2001.
  196. Liao Y., Sibold K., Time-ordered perturbation theory on non-commutative spacetime. II. Unitarity, Eur. Phys. J. C 25 (2002), 479-486, hep-th/0206011.
  197. Bozkaya H., Fischer P., Grosse H., Pitschmann M., Putz V., Schweda M., Wulkenhaar R., Space/time noncommutative field theories and causality, Eur. Phys. J. C 29 (2003), 133-141, hep-th/0209253.
  198. Ohl T., Rückl R., Zeiner J., Unitarity of time-like noncommutative gauge theories: rhe violation of Ward identities in time-ordered perturbation theory, Nuclear Phys. B 676 (2004), 229-242, hep-th/0309021.
  199. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., On the unitarity problem in space/time noncommutative theories, Phys. Lett. B 533 (2002), 178-181, arXiv:hep-th/0201222.
  200. Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., Field theory on noncommutative spacetimes: quasiplanar Wick products, Phys. Rev. D 71 (2005), 025022, 12 pages, hep-th/0408204.
  201. Kulish P.P., Mudrov A.I., Twist-related geometries on q-Minkowski space, Proc. Steklov Inst. Math. (1999), no. 3 (226), 86-97, math.QA/9901019.
  202. Oeckl R., Untwisting noncommutative Rd and the equivalence of quantum field theories, Nuclear Phys. B 581 (2000), 559-574, hep-th/0003018.
  203. Wess J., Deformed gauge theories, in Noncommutative Spacetimes, Lecture Notes in Physics, Vol. 774, Springer, Berlin, 2009, 23-37.
  204. Aschieri P., Dimitrijevic M., Meyer F., Schraml S., Wess J., Twisted gauge theories, Lett. Math. Phys. 78 (2006), 61-71, hep-th/0603024.
  205. Vassilevich D.V., Twist to close, Modern Phys. Lett. A 21 (2006), 1279-1283, hep-th/0602185.
  206. Banerjee R., Samanta S., Gauge generators, transformations and identities on a noncommutative space, Eur. Phys. J. C 51 (2007), 207-215, hep-th/0608214.
  207. Balachandran A.P., Pinzul A., Qureshi B.A., Vaidya S., Twisted gauge and gravity theories on the Groenewold-Moyal plane, Phys. Rev. D 76 (2007), 105025, 10 pages, arXiv:0708.0069.
  208. Akofor E., Balachandran A.P., Joseph A., Quantum fields on the Groenewold-Moyal plane, Internat. J. Modern Phys. A 23 (2008), 1637-1677, arXiv:0803.4351.
  209. Lukierski J., From noncommutative space-time to quantum relativistic symmetries with fundamental mass parameter, hep-th/0112252.
  210. Dimitrijevic M., Möller L., Tsouchnika E., Derivatives, forms and vector fields on the κ-deformed Euclidean space, J. Phys. A: Math. Gen. 37 (2004), 9749-9770, hep-th/0404224.
  211. Meljanac S., Samsarov A., Stojic M., Gupta K.S., κ-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008), 295-309, arXiv:0705.2471.
  212. Ydri B., Noncommutative chiral anomaly and the Dirac-Ginsparg-Wilson operator, J. High Energy Phys. 2003 (2003), no. 8, 046, 18 pages, hep-th/0211209.
  213. Azuma T., Bal S., Nagao K., Nishimura J., Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term, J. High Energy Phys. 2004 (2004), no. 5, 005,36 pages hep-th/0401038.
  214. Grimstrup J.M., Noncommutative coordinate transformations and the Seiberg-Witten map, Acta Phys. Polon. B 34 (2003), 4855-4866.
  215. Aschieri P., Steinacker H., Madore J., Manousselis P., Zoupanos G., Fuzzy extra dimensions: dimensional reduction, dynamical generation and renormalizability, arXiv:0704.2880.
  216. Steinacker H., Emergent gravity and noncommutative branes from Yang-Mills matrix models, Nuclear Phys. B 810 (2009), 1-39, arXiv:0806.2032.
  217. Klammer D., Steinacker H., Fermions and noncommutative emergent gravity. II. Curved branes in extra dimensions, J. High Energy Phys. 2010 (2010), no. 2, 074, 32 pages, arXiv:0909.5298.
  218. Grosse H., Lizzi F., Steinacker H., Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev. D 81 (2010), 085034, 12 pages, arXiv:1001.2703.
  219. Steinacker H., Emergent geometry and gravity from matrix models: an introduction, Classical Quantum Gravity 27 (2010), 133001, 46 pages, arXiv:1003.4134.
  220. Majid S., Quantum groups and noncommutative geometry, J. Math. Phys. 41 (2000), 3892-3942, hep-th/0006167.
  221. McCurdy S., Zumino B., Covariant star product for exterior differential forms on symplectic manifolds, AIP Conf. Proc. 1200 (2010), 204-214, arXiv:0910.0459.
  222. Chaichian M., Tureanu A., Zet G., Gauge field theories with covariant star-product, J. High Energy Phys. 2009 (2009), no. 7, 084, 13 pages, arXiv:0905.0608.
  223. Vassilevich D.V., Diffeomorphism covariant star products and noncommutative gravity, Classical Quantum Gravity 26 (2009), 145010, 8 pages, arXiv:0904.3079.
  224. Ho P.-M., Miao S.-P., Noncommutative differential calculus for a D-brane in a nonconstant B field background with H=0, Phys. Rev. D 64 (2001), 126002, 8 pages, hep-th/0105191.

Previous article   Next article   Contents of Volume 6 (2010)