Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 056, 12 pages      arXiv:1003.5618      http://dx.doi.org/10.3842/SIGMA.2010.056
Contribution to the Special Issue “Noncommutative Spaces and Fields”

A Note on Dirac Operators on the Quantum Punctured Disk

Slawomir Klimek and Matt McBride
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA

Received March 30, 2010, in final form July 07, 2010; Published online July 16, 2010

Abstract
We study quantum analogs of the Dirac type operator −2z∂/∂z on the punctured disk, subject to the Atiyah-Patodi-Singer boundary conditions. We construct a parametrix of the quantum operator and show that it is bounded outside of the zero mode.

Key words: operator theory; functional analysis; non-commutative geometry.

pdf (220 kb)   ps (159 kb)   tex (13 kb)

References

  1. Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
  2. Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993.
  3. Carey A.L., Klimek S., Wojciechowski K.P., Dirac operators on noncommutative manifolds with boundary, arXiv:0901.0123.
  4. Carey A.L., Phillips J., Rennie A., A noncommutative Atiyah-Patodi-Singer index theorem in KK-theory, arXiv:0711.3028.
  5. Connes A., Non-commutative differential geometry, Academic Press, 1994.
  6. Conway J., Subnormal operators, Research Notes in Mathematics, Vol. 51, Pitman, Boston, Mass. - London, 1981.
  7. Halmos P.R., Sunder V.S., Bounded integral operators on L2 spaces, Results in Mathematics and Related Areas, Vol. 96, Springer-Verlag, Berlin - New York, 1978.
  8. Klimek S., Lesniewski A., Quantum Riemann surfaces. III. The exceptional cases, Lett. Math. Phys. 32 (1994), 45-61.
  9. Klimek S., McBride M., D-bar operators on quantum domains, arXiv:1001.2216.

Previous article   Next article   Contents of Volume 6 (2010)