Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 6 (2010), 054, 7 pages      arXiv:1007.1511

Horizontal Forms of Chern Type on Complex Finsler Bundles

Cristian Ida
Department of Algebra, Geometry and Differential Equations, Transilvania University of Braşov, Str. Iuliu Maniu 50, Braşov 500091, România

Received October 28, 2009, in final form June 30, 2010; Published online July 09, 2010

The aim of this paper is to construct horizontal Chern forms of a holomorphic vector bundle using complex Finsler structures. Also, some properties of these forms are studied.

Key words: complex Finsler bundles; horizontal forms of Chern type.

pdf (202 kb)   ps (151 kb)   tex (10 kb)


  1. Abate M., Patrizio G., Finsler metrics - a global approach. With applications to geometric function theory, Lectures Notes in Math., Vol. 1591, Springer-Verlag, Berlin, 1994.
  2. Aikou T., A note on infinitesimal deformations of complex Finsler structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 43 (1997), 295-305.
  3. Aikou T., Applications of Bott connection to Finsler geometry, in Proceedings of the Colloquium "Steps in Differential Geometry" (Debrecen, 2000), Inst. Math. Inform., Debrecen, 2001, 1-13.
  4. Aikou T., Finsler geometry on complex vector bundles. A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., Vol. 50, Cambridge Univ. Press, Cambridge, 2004, 83-105.
  5. Cao J.-K., Wong P.-M., Finsler geometry of projectivized vector bundles, J. Math. Kyoto Univ. 43 (2003), 369-410.
  6. Chandler K., Wong P.-M., On the holomorphic sectional and bisectional curvatures in complex Finsler geometry, Period. Math. Hungar. 48 (2004), 93-123.
  7. Faran J.J., The equivalence problem for complex Finsler Hamiltonians, in Finsler Geometry (Seattle, WA, 1995), Contemp. Math., Vol. 196, Amer. Math. Soc., Providence, RI, 1996, 133-144.
  8. Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
  9. Kobayashi S., Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153-166.
  10. Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, Vol. 15, Kanô Memorial Lectures, Vol. 5, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987.
  11. Kobayashi S., Complex Finsler vector bundles, in Finsler Geometry (Seattle, WA, 1995), Contemp. Math., Vol. 196, Amer. Math. Soc., Providence, RI, 1996, 145-153.
  12. Munteanu G., Complex spaces in Finsler, Lagrange and Hamilton geometries, Fundamental Theories of Physics, Vol. 141, Kluwer Academic Publishers, Dordrecht, 2004.
  13. Pitis G., Munteanu G., V-cohomology of complex Finsler manifolds, Studia Univ. Babeş-Bolyai Math. 43 (1998), no. 3, 75-82.
  14. Rund H., Generalized metrics on complex manifolds, Math. Nachr. 34 (1967), 55-77.
  15. Vaisman I., Cohomology and differential forms, Pure and Applied Mathematics, Vol. 21, Marcel Dekker, Inc., New York, 1973.
  16. Wong P.M., A survey of complex Finsler geometry, in Finsler Geometry, Sapporo 2005 - in Memory of Makoto Matsumoto, Adv. Stud. Pure Math., Vol. 48, Math. Soc. Japan, Tokyo, 2007, 375-433.
  17. Zhong C., Zhong T., Horizontal ∂-Laplacian on complex Finsler manifolds, Sci. China Ser. A 48 (2005), suppl., 377-391.
  18. Zhong C., Zhong T., Hodge decomposition theorem on strongly Kähler Finsler manifolds, Sci. China Ser. A 49, (2006), 1696-1714.

Previous article   Next article   Contents of Volume 6 (2010)