Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 6 (2010), 037, 20 pages      arXiv:0908.1743      http://dx.doi.org/10.3842/SIGMA.2010.037
Contribution to the Special Issue “Noncommutative Spaces and Fields”

One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p−2 U(1) Gauge Model

Daniel N. Blaschke a, b, Arnold Rofner a and René I.P. Sedmik a
a) Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
b) Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

Received February 10, 2010, in final form April 23, 2010; Published online May 04, 2010

Abstract
This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative p−2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433-443] to localize the BRST covariant operator (D2θ2D2)−1 lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.

Key words: noncommutative field theory; gauge field theories; renormalization.

pdf (752 kb)   ps (1006 kb)   tex (1123 kb)

References

  1. Gurau R., Magnen J., Rivasseau V., Tanasa A., A translation-invariant renormalizable non-commutative scalar model, Comm. Math. Phys. 287 (2009), 275-290, arXiv:0802.0791.
  2. Vilar L.C.Q., Ventura O.S., Tedesco D.G., Lemes V.E.R., On the renormalizability of noncommutative U(1) gauge theory - an algebraic approach, J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages, arXiv:0902.2956.
  3. Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P., One-loop calculations for a translation invariant non-commutative gauge model, Eur. Phys. J. C: Part. Fields 62 (2009), 433-443, arXiv:0901.1681.
  4. Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020, 30 pages, arXiv:hep-th/9912072.
  5. Matusis A., Susskind L., Toumbas N., The IR/UV connection in the non-commutative gauge theories, J. High Energy Phys. 2000 (2000), no. 12, 002, 18 pages, hep-th/0002075.
  6. Tanasa A., Scalar and gauge translation-invariant noncommutative models, Romanian J. Phys. 53 (2008) 1207-1212, arXiv:0808.3703.
  7. Rivasseau V., Non-commutative renormalization, in Quantum Spaces - Poincaré Seminar 2007, Editors B. Duplantier and V. Rivasseau, Prog. Math. Phys., Vol. 53, Birkhäuser, Basel, 2007, 19-107, arXiv:0705.0705.
  8. Douglas M.R., Nekrasov N.A., Noncommutative field theory, Rev. Modern Phys. 73 (2001), 977-1029, hep-th/0106048.
  9. Grosse H., Wulkenhaar R., Renormalisation of φ4 theory on noncommutative R2 in the matrix base, J. High Energy Phys. 2003 (2003), no. 12, 019, 26 pages, hep-th/0307017.
  10. Grosse H., Vignes-Tourneret F., Quantum field theory on the degenerate Moyal space, arXiv:0803.1035.
  11. Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., Renormalization of noncommutative φ4-theory by multi-scale analysis, Comm. Math. Phys. 262 (2006), 565-594, hep-th/0501036.
  12. Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., Renormalization of non-commutative Φ44 field theory in x space, Comm. Math. Phys. 267 (2006), 515-542, hep-th/0512271.
  13. Grosse H., Wulkenhaar R., Renormalisation of φ4 theory on noncommutative R4 in the matrix base, Comm. Math. Phys. 256 (2005), 305-374, arXiv:hep-th/0401128.
  14. Blaschke D.N., Gieres F., Kronberger E., Reis T., Schweda M., Sedmik R.I.P., Quantum corrections for translation-invariant renormalizable non-commutative φ4 theory, J. High Energy Phys. 2008 (2008), no. 11, 074, 16 pages, arXiv:0807.3270.
  15. Ben Geloun J., Tanasa A., One-loop β functions of a translation-invariant renormalizable noncommutative scalar model, Lett. Math. Phys. 86 (2008), 19-32, arXiv:0806.3886.
  16. Blaschke D.N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., Translation-invariant models for non-commutative gauge fields, J. Phys. A: Math. Theor. 41 (2008), 252002, 7 pages, arXiv:0804.1914.
  17. Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P., Improved localization of a renormalizable non-commutative translation invariant U(1) gauge model, Europhys. Lett. 86 (2009), 51002, 6 pages, arXiv:0903.4811.
  18. Zwanziger D., Local and renormalizable action from the Gribov horizon, Nuclear Phys. B 323 (1989), 513-544.
  19. Zwanziger D., Renormalizability of the critical limit of lattice gauge theory by BRS invariance, Nuclear Phys. B 399 (1993), 477-513.
  20. Dudal D., Gracey J., Sorella S.P., Vandersickel N., Verschelde H., A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008), 065047, 30 pages, arXiv:0806.4348.
  21. Baulieu L., Sorella S.P., Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way, Phys. Lett. B 671 (2009), 481-485, arXiv:0808.1356.
  22. Blaschke D.N., Kronberger E., Rofner A., Schweda M., Sedmik R.I.P., Wohlgenannt M., On the problem of renormalizability in non-commutative gauge field models - a critical review, Fortschr. Phys. 58 (2010), 364-372, arXiv:0908.0467.
  23. Hayakawa M., Perturbative analysis on infrared aspects of noncommutative QED on R4, Phys. Lett. B 478 (2000), 394-400, hep-th/9912094.
  24. Armoni A., Comments on perturbative dynamics of non-commutative Yang-Mills theory, Nuclear Phys. B 593 (2001), 229-242, hep-th/0005208.
  25. Ruiz Ruiz F., Gauge-fixing independence of IR divergences in non-commutative U(1), perturbative tachyonic instabilities and supersymmetry, Phys. Lett. B 502 (2001), 274-278, hep-th/0012171.
  26. Attems M., Blaschke D.N., Ortner M., Schweda M., Stricker S., Weiretmayr M., Gauge independence of IR singularities in non-commutative QFT - and interpolating gauges, J. High Energy Phys. 2005 (2005), no. 07, 071, 10 pages, hep-th/0506117.

Previous article   Next article   Contents of Volume 6 (2010)