Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 6 (2010), 007, 7 pages      arXiv:0811.3066
Contribution to the Special Issue “Noncommutative Spaces and Fields”

Quantum Isometry Group for Spectral Triples with Real Structure

Debashish Goswami
Stat-Math Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India

Received November 06, 2009, in final form January 17, 2010; Published online January 20, 2010

Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of 'volume form' as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530-2572].

Key words: quantum isometry groups; spectral triples; real structures.

pdf (201 kb)   ps (148 kb)   tex (12 kb)


  1. Banica T., Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), 27-51, math.QA/0304025.
  2. Banica T., Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243-280, math.QA/0311402.
  3. Bichon J., Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), 665-673, math.QA/9902029.
  4. Bhowmick J., Quantum isometry group of the n-tori, Proc. Amer. Math. Soc. 137 (2009), 3155-3161, arXiv:0803.4434.
  5. Bhowmick J., Goswami D., Quantum group of orientation-preserving Riemannian isometries, J. Funct. Anal. 257 (2009), 2530-2572, arXiv:0806.3687.
  6. Bhowmick J., Goswami D., Skalski A., Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc., to appear, arXiv:0807.4288.
  7. Bhowmick J., Goswami D., Quantum isometry groups: examples and computations, Comm. Math. Phys. 285 (2009), 421-444, arXiv:0707.2648.
  8. Bhowmick J., Goswami D., Quantum isometry groups of the Podles sphere, arXiv:0810.0658.
  9. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  10. Dabrowski L., Geometry of quantum spheres, J. Geom. Phys. 56 (2006), 86-107, math.QA/0501240.
  11. Dabrowski L., Landi G., Paschke M., Sitarz A., The spectral geometry of the equatorial Podles sphere, C. R. Math. Acad. Sci. Paris 340 (2005), 819-822, math.QA/0408034.
  12. Dabrowski L., D'Andrea F., Landi G., Wagner E., Dirac operators on all Podles quantum spheres, J. Noncommut. Geom. 1 (2007), 213-239, math.QA/0606480.
  13. Goswami D., Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160, arXiv:0704.0041.
  14. Maes A., Van Daele A., Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), 73-112, math.FA/9803122.
  15. Varilly J.C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
  16. Wang S., Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692.
  17. Wang S., Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211, math.OA/9807091.
  18. Wang S., Structure and isomorphism classification of compact quantum groups Au(Q) and Bu(Q), J. Operator Theory 48 (2002), 573-583, math.OA/9807095.
  19. Wang S., Ergodic actions of universal quantum groups on operator algebras, Comm. Math. Phys. 203 (1999), 481-498, math.OA/9807093.
  20. Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
  21. Woronowicz S.L., Compact quantum groups, in Symétries Quantiques (Les Houches, 1995), Editors A. Connes et al., North-Holland, Amsterdam, 1998, 845-884.

Previous article   Next article   Contents of Volume 6 (2010)