Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 090, 45 pages      arXiv:0802.2198      http://dx.doi.org/10.3842/SIGMA.2009.090
Contribution to the Special Issue on Deformation Quantization

Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology

Stefan Hollands
School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK

Received September 19, 2008, in final form September 01, 2009; Published online September 18, 2009

Abstract
In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE) of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.

Key words: quantum field theory; operator product expansion; quantum algebra; Hochschild cohomology.

pdf (535 kb)   ps (359 kb)   tex (133 kb)

References

  1. Haag R., Local quantum physics. Fields, particles, algebras, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
  2. Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068-3071.
  3. Kac V., Vertex algebras for beginners, University Lectures Series, Vol. 10, American Mathematical Society, Providence, RI, 1997.
  4. Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, Vol. 134, Academic Press, Inc., Boston, MA, 1988.
  5. Nikolov N.M., Vertex algebras in higher dimensions and global conformally invariant quantum field theory, Comm. Math. Phys. 253 (2004), 283-322, hep-th/0307235.
  6. Borcherds R.E., Vertex algebras, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Editors M. Kashiwara, A. Matsuo, K. Saito and I. Satake, Progr. Math., Vol. 160, Birkhäuser Boston, Inc., Boston, MA, 1998, 35-77, q-alg/9706008.
  7. Gaberdiel M.R., Goddard P., Axiomatic conformal field theory, Comm. Math. Phys. 209 (2000), 549-594, hep-th/9810019.
  8. Nikolov N.M., Rehren K.H., Todorov I.T., Partial wave expansion and Wightman positivity in conformal field theory, Nuclear Phys. B 722 (2005), 266-296, hep-th/0504146.
  9. Nikolov N.M., Rehren K.H., Todorov I.T., Harmonic bilocal fields generated by globally conformal invariant scalar fields, Comm. Math. Phys. 279 (2008), 225-250, arXiv:0704.1960.
  10. Hollands S., Wald R.M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Comm. Math. Phys. 223 (2001), 289-326, gr-qc/0103074.
  11. Hollands S., Wald R.M., Existence of local covariant time ordered products of quantum fields in curved spacetime, Comm. Math. Phys. 231 (2002), 309-345, gr-qc/0111108.
  12. Brunetti R., Fredenhagen K., Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds, Comm. Math. Phys. 208 (2000), 623-661, math-ph/9903028.
  13. Brunetti R., Fredenhagen K., Verch R., The generally covariant locality principle - a new paradigm for local quantum physics, Comm. Math. Phys. 237 (2003), 31-68, math-ph/0112041.
  14. Wilson K.G., Non-Lagrangian models of current algebra, Phys. Rev. 179 (1969), 1499-1512.
  15. Wilson K.G., Zimmermann W., Operator product expansions and composite field operators in the general framework of quantum field theory, Comm. Math. Phys. 24 (1972), 87-106.
  16. Zimmermann W., Normal products and the short distance expansion in the perturbation theory of renormalizable interactions, Annals Phys. 77 (1973), 570-601.
  17. Hollands S., The operator product expansion for perturbative quantum field theory in curved spacetime, Comm. Math. Phys. 273 (2007), 1-36, gr-qc/0605072.
  18. Hollands S., Wald R.M., Axiomatic quantum field theory in curved spacetime, submitted, arXiv:0803.2003.
  19. Migdal A.A., 4-dimensional soluble models of conformal quantum field theory, Preprint Landau Institute for Theoretical Physics, Academy of Sciences of the U.S.S.R, Moscow, 1972.
  20. Migdal A.A., Conformal invariance and bootstrap, Phys. Lett. B 37 (1971), 386-388.
  21. Polyakov A.M., Non-Hamiltonian approach to quantum field theory at small distances, Preprint Landau Institute for Theoretical Physics, Academy of Sciences of the U.S.S.R, Moscow, 1972.
  22. Todorov I.T., Conformal expansions for Euclidean Green's functions, Lectures presented in SCUOLA Normale Superiore (Pisa, June 1974), Extended version of talk given at Int. Symposium on Recent Progress in Mathematical Physics (Warsaw, Poland, March 25-30, 1974), Warsaw Math. Phys., 1974, 0057-0119.
  23. Mack G., Osterwalder-Schrader positivity in conformal invariant quantum field theory, in Trends in Elementary Particle Theory, Lectures Notes in Physics, Vol. 37, Editors H. Rollnick and K. Dietz, Springer, Berlin, 1975, 66-91.
  24. Mack G., Group theoretical approach to conformal invariant quantum field theory, in Proceedings on Renormalization and Invariance in Quantum Field Theory (Capri, Italy, July 1973), Editor E.R. Caianiello, Plenum Publishing Corp., New York, 1974, 123-157.
  25. Haag R., On quantum field theories, Danske Vid. Selsk. Mat.-Fys. Medd. 29 (1955), no. 12, 37 pages.
  26. Glaser V., Lehmann H., Zimmermann W., Field operators and retarded products, Nuovo Cimento 6 (1957), 1122-1128.
  27. Dyson F., The S matrix in quantum electrodynamics, Phys. Rev. 75 (1949), 1736-1755.
  28. Schwinger J., On the Green's functions of quantized fields, Proc. Nat. Acad. Sci. U.S.A. 31 (1951), 452-459.
  29. Steinmann O., Perturbation theory of Wightman functions, Comm. Math. Phys. 152 (1993), 627-645.
  30. Costello K., Factorization algebras in perturbative quantum field theory, Talk given at the Conference on Topological Field Theories (2009), see www.math.uchicago.edu/~ejenkins/notes/nwtft/25may-kc.pdf.
  31. Beilinson A., Drinfeld V.G., Chiral algebras, American Mathematical Society Colloquium Publications, Vol. 51, American Mathematical Society, Providence, RI, 2004.
  32. Nikolov N., Unpublished notes, Göttingen, May 2005.
  33. Hollands S., Olbermann H., Perturbative quantum field theory via vertex algebras, arXiv:0906.5313.
  34. MacLane S., Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York - Berlin, 1971.
  35. MacLane S., Homology, Die Grundlehren der mathematischen Wissenschaften, Vol. 114, Springer-Verlag, Berlin - New York, 1967.
  36. Happel D., Hochschild cohomology of finite-dimensional algebras, in Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Math., Vol. 1404, Springer, Berlin, 1989, 108-126.
  37. Connes A., Non-commutative differential geometry, Publ. Math., Inst. Hautes Étud. Sci. 62 (1985), 41-144.
  38. Faddeev L.D., Popov V.N., Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25 (1967), 29-30.
  39. Henneaux M., Teitelboim C., BRST cohomology in classical mechanics, Comm. Math. Phys. 115 (1988), 213-230.
  40. Becchi C., Rouet A., Stora R., Renormalization of gauge theories, Ann. Physics 98 (1976), 287-321.
  41. Streater R.F., Wightman A.S., PCT, spin and statistics, and all that, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.
  42. Hollands S., A general PCT theorem for the operator product expansion in curved spacetime, Comm. Math. Phys. 244 (2004), 209-244, gr-qc/0212028.
  43. Osterwalder K., Schrader R., Axioms for Euclidean Green's functions, Comm. Math. Phys. 31 (1973), 83-112.
  44. Osterwalder K., Schrader R., Axioms for Euclidean Green's functions. II, Comm. Math. Phys. 42 (1975), 281-305.
  45. Gerstenhaber M., On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103.
  46. Barnich G., Brandt F., Henneaux M., Local BRST cohomology in gauge theories, Phys. Rep. 338 (2000), 439-569, hep-th/0002245.

Previous article   Next article   Contents of Volume 5 (2009)