Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 085, 21 pages      arXiv:0908.4045
Contribution to the Proceedings of the 5-th Microconference Analytic and Algebraic Methods V

Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

Miloslav Znojil
Nuclear Physics Institute ASCR, 250 68 Rez, Czech Republic

Received July 05, 2009, in final form August 23, 2009; Published online August 27, 2009

One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians HH is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.

Key words: cryptohermitian observables; unitary scattering; Runge-Kutta discretization; quasilocal metric operators.

pdf (329 kb)   ps (213 kb)   tex (29 kb)


  1. Znojil M., Three-Hilbert-space formulation of quantum mechanics, SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700.
  2. Acton F.S., Numerical methods that work, Harper & Row, New York, 1970.
    Znojil M., One-dimensional Schrödinger equation and its "exact" representation on a discrete lattice, Phys. Lett. A 223 (1996), 411-416.
    Fernández F.M., Guardiola R., Ros J., Znojil M., A family of complex potentials with real spectrum, J. Phys. A: Math. Gen. 32 (1999), 3105-3116, quant-ph/9812026.
  3. Znojil M., Discrete PT-symmetric models of scattering, J. Phys. A: Math. Theor. 41 (2008), 292002, 9 pages, arXiv:0806.2019.
  4. Znojil M., Comment on "Conditionally exactly soluble class of quantum potentials", Phys. Rev. A 61 (2000), 066101, 4 pages, quant-ph/9811088.
  5. Sibuya Y., Global theory of second order linear differential equation with polynomial coefficient, North Holland, Amsterdam, 1975.
  6. Bender C.M., Turbiner A., Analytic continuation of eigenvalue problems, Phys. Lett. A 173 (1993), 442-446.
  7. Buslaev V., Grecchi V., Equivalence of unstable anharmonic oscillators and double wells, J. Phys. A: Math. Gen. 26 (1993), 5541-5549.
  8. Ahmed Z., Bender C.M., Berry M.V., Reflectionless potentials and PT symmetry, J. Phys. A: Math. Gen. 38 (2005), L627-L630, quant-ph/0508117.
    Jones H.F., Mateo J., An equivalent Hermitian Hamiltonian for the non-Hermitian –x4 potential, Phys. Rev. D 73 (2006), 085002, 4 pages, quant-ph/0601188.
    Jones H.F., Mateo J., Rivers R.J., On the path-integral derivation of the anomaly for the Hermitian equivalent of the complex PT-symmetric quartic Hamiltonian, Phys. Rev. D 74 (2006), 125022, 6 pages, hep-th/0610245.
  9. Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246, physics/9712001.
  10. Dorey P., Dunning C., Tateo R., Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics, J. Phys. A: Math. Gen. 34 (2001), 5679-5704, hep-th/0103051.
    Dorey P., Dunning C., Tateo R., The ODE/IM correspondence, J. Phys. A: Math. Gen. 40 (2007), R205-R283, hep-th/0703066.
  11. Shin K.C., On the Reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys. 229 (2002), 543-564, math-ph/0201013.
    Davies E.B., Linear operators and their spectra, Cambridge, Cambridge University Press, 2007.
  12. Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
  13. Smilga A.V., Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians, J. Phys. A: Math. Theor. 41 (2008), 244026, 21 pages, arXiv:0706.4064.
  14. Scholtz F.G., Geyer H.B., Hahne F.J.W., Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Physics 213 (1992), 74-101.
  15. Messiah A., Quantum mechanics, North Holland, Amsterdam, 1961.
  16. Bender C.M., Brandt S.F., Chen J.-H., Wang Q., Ghost busting: PT-symmetric interpretation of the Lee model, Phys. Rev. D 71 (2005), 025014, 11 pages, hep-th/0411064.
  17. Bessis D., Private communication, 1992.
  18. Mostafazadeh A., Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential, J. Phys. A: Math. Gen. 39 (2006), 10171-10188, quant-ph/0508195.
  19. Znojil M., Time-dependent version of cryptohermitian quantum theory, Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874.
  20. Bila H., A diabatic time-dependent metrics in PT-symmetric quantum theories, arXiv:0902.0474.
  21. Jakubský V., Thermodynamics of pseudo-Hermitian systems in equilibrium, Modern Phys. Lett. A 22 (2007), 1075-1084, quant-ph/0703092.
    Assis P.E.G., Fring A., The quantum brachistochrone problem for non-Hermitian Hamiltonians, J. Phys. A: Math. Theor. 41 (2008), 244002, 12 pages, quant-ph/0703254.
    Rotter I., A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A: Math. Theor. 42 (2009), 153001, 51 pages, arXiv:0711.2926.
  22. Jones H.F., Scattering from localized non-Hermitian potentials, Phys. Rev. D 76 (2007), 125003, 5 pages, arXiv:0707.3031.
  23. Znojil M., Scattering theory with localized non-Hermiticites, Phys. Rev. D 78 (2008), 025026, 10 pages, arXiv:0805.2800.
  24. Ahmed Z., Handedness of complex PT-symmetric potential barriers, Phys. Lett. A 324 (2004), 152-158, quant-ph/0312151.
    Cannata F., Dedonder J.-P., Ventura A., Scattering in PT-symmetric quantum mechanics, Ann. Physics 322 (2007), 397-433, quant-ph/0606129.
  25. Jones H.F., Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation, Phys. Rev. D 78 (2008), 065032, 7 pages, arXiv:0805.1656.
  26. Dieudonne J., Quasi-Hermitian operators, in Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Pergamon, Oxford, 1961, 115-122.
    Williams J.P., Operators similar to their adjoints, Proc. Amer. Math. Soc. 20 (1969), 121-123.
  27. Mostafazadeh A., Delta-function potential with a complex coupling, J. Phys. A: Math. Gen. 39 (2006), 13495-13506, quant-ph/0606198.
  28. Jones H.F., Talk presented during conference "Pseudo-Hermitian Hamiltonians in Quantum Physics VI", London, City University, July 16-18, 2007.
  29. Mostafazadeh A., Mehri-Dehnavi H., Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions, J. Phys. A: Math. Theor. 42 (2009), 125303, 27 pages, arXiv:0901.3563.
  30. Znojil M., Singular anharmonicities and the analytic continued fractions. I, J. Math. Phys. 30 (1989), 23-27.
    Znojil M., Singular anharmonicities and the analytic continued fractions. II. The potentials V(r)=ar2+br–4+cr–6, J. Math. Phys. 31 (1990), 108-112.
  31. Znojil M., Extended continued fractions and energies of the anharmonic oscillators, J. Math. Phys. 24 (1983), 1136-1141.
    Znojil M., The generalized continued fractions and potentials of the Lennard-Jones type, J. Math. Phys. 31 (1990), 1955-1961.
  32. Mostafazadeh A., Hilbert space structures on the solution space of Klein-Gordon type evolution equations, Classical Quantum Gravity 20 (2003), 155-171, math-ph/0209014.
  33. Jakubský V., Smejkal J., A positive-definite inner product for free Proca particle, Czechoslovak J. Phys. 56 (2006), 985-998.
    Smejkal J., Jakubský V., Znojil M., Relativistic vector bosons and PT-symmetry, J. Phys. Stud. 11 (2007), 45-54, hep-th/0611287.
    Zamani F., Mostafazadeh A., Quantum mechanics of Proca fields, J. Math. Phys. 50 (2009), 052302, 35 pages, arXiv:0805.1651.

Previous article   Next article   Contents of Volume 5 (2009)