Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 069, 17 pages      arXiv:0707.2736
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators''

Non-Hermitian Quantum Systems and Time-Optimal Quantum Evolution

Alexander I. Nesterov
Departamento de Física, CUCEI, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, CP 44420, Jalisco, México

Received November 17, 2008, in final form June 23, 2009; Published online July 07, 2009

Recently, Bender et al. have considered the quantum brachistochrone problem for the non-Hermitian PT-symmetric quantum system and have shown that the optimal time evolution required to transform a given initial state |ψi> into a specific final state |ψf> can be made arbitrarily small. Additionally, it has been shown that finding the shortest possible time requires only the solution of the two-dimensional problem for the quantum system governed by the effective Hamiltonian acting in the subspace spanned by |ψi> and |ψf>. In this paper, we study a similar problem for the generic non-Hermitian Hamiltonian, focusing our attention on the geometric aspects of the problem.

Key words: non-Hermitian quantum systems; quantum brachistochrone problem.

pdf (623 kb)   ps (855 kb)   tex (1010 kb)


  1. Carlini A., Hosoya A., Koike T., Okudaira Y., Time-optimal quantum evolution, Phys. Rev. Lett. 96 (2006), 060503, 4 pages.
  2. Bender C.M., Brody D.C., Jones H.F., Meister B.K., Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98 (2007), 040403, 4 pages, quant-ph/0609032.
  3. Brody D.C., Elementary derivation for passage times, J. Phys. A: Math. Gen. 36 (2003), 5587-5593, quant-ph/0302067.
  4. Brody D.C., Hook D.W., On optimum Hamiltonians for state transformations, J. Phys. A: Math. Gen. 39 (2006), L167-L170, quant-ph/0601109.
  5. Bender C.M., Brody D.C., Optimal time evolution for Hermitian and non-Hermitian Hamiltonians, in Time in Quantum Mechanics II, Editor J.G. Muga, Lecture Notes in Phys., Springer, to appear, arXiv:0808.1823.
  6. Assis P.E.G., Fring A., The quantum brachistochrone problem for non-Hermitian Hamiltonians, J. Phys. A: Math. Theor. 41 (2008), 244002, 12 pages, quant-ph/0703254.
  7. Mostafazadeh A., Quantum brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics, Phys. Rev. Lett. 99 (2007), 130502, 4 pages, arXiv:0706.3844.
  8. Mostafazadeh A., Hamiltonians generating optimal-speed evolutions, Phys. Rev. A 79 (2009), 014101, 4 pages, arXiv:0804.4755.
  9. Bender C.M., Brody D.C., Jones H.F., Meister B.K., Comment on the quantum brachistochrone problem, arXiv:0804.3487.
  10. Günther U., Samsonov B.F., The PT-symmetric brachistochrone problem, Lorentz boosts and non-unitary operator equivalence classes, Phys. Rev. A 78 (2008), 042115, 9 pages, arXiv:0709.0483.
  11. Günther U., Samsonov B.F., Naimark-dilated PT-symmetric brachistochrone, Phys. Rev. Lett. 101 (2008), 230404, 4 pages, arXiv:0807.3643.
  12. Günther U., Rotter I., Samsonov B.F., Projective Hilbert space structures at exceptional points, J. Phys. A: Math. Theor. 40 (2007), 8815-8833, arXiv:0704.1291.
  13. Martin D., Is PT-symmetric quantum mechanics just quantum mechanics in a non-orthogonal basis?, quant-ph/0701223.
  14. Rotter I., The brachistochrone problem in open quantum systems, J. Phys. A: Math. Theor. 40 (2007), 14515-14526, arXiv:0708.3891.
  15. Weisskopf V.F., Wigner E.P., Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie, Z. f. Physik 63 (1930), 54-73.
  16. Weisskopf V.F., Wigner E.P., Über die natürliche Linienbreite in der Strahlung des harmonischen Oszillators. Z. f. Physics 65 (1930), 18-29.
  17. Aharonov Y., Massar S., Popescu S., Tollaksen J., Vaidman L., Adiabatic measurements on metastable systems, Phys. Rev. Lett. 77 (1996), 983-987, quant-ph/9602011.
  18. Plenio M.B., Knight P.L., The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Modern Phys. 70 (1998), 101-144, quant-ph/9702007.
  19. Carollo A., Fuentes-Guridi I., França Santos M., Vedral V., Geometric phase in open system, Phys. Rev. Lett. 90 (2003), 160402, 4 pages, quant-ph/0301037.
  20. Berry M.V., Physics of nonhermitian degeneracies, Czechoslovak J. Phys. 54 (2004), 1039-1047.
  21. Morse P.M., Feshbach H., Methods of theoretical physics, McGraw-Hill, New York, 1953.
  22. Chu S.-I., Wu Z.-C., Layton E., Density matrix formulation of complex geometric quantum phases in dissipative systems, Chem. Phys. Lett. 157 (1989), 151-158.
  23. Chu S.-I., Telnov D.A., Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields, Phys. Rep. 390 (2004), 1-131.
  24. Nesterov A.I., An optimum Hamiltonian for non-Hermitian quantum evolution and the complex Bloch sphere, arXiv:0806.4646.
  25. Heiss W.D., Exceptional points of non-Hermitian operators, J. Phys. A: Math. Gen. 37 (2004), 2455-2464, quant-ph/0304152.
  26. Heiss W.D., Exceptional points - their universal occurrence and their physical significance, Czechoslovak J. Phys. 54 (2004), 1091-1099.
  27. Berry M.V., Quantal phase factor accompanying adiabatic changes, Proc. Roy. Soc. London Ser. A 392 (1984), 45-57.
  28. Berry M.V., Dennis M.R., The optical singularities of birefringent dichroic chiral crystals, Proc. Roy. Soc. London Ser. A 459 (2003), 1261-1292.
  29. Nesterov A.I., Aceves de la Cruz F., Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points, J. Phys. A: Math. Theor. 41 (2008), 485304, 25 pages, arXiv:0806.3720.
  30. Kirillov O.N., Mailybaev A.A., Seyranian A.P., Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation, J. Phys. A: Math. Gen. 38 (2005), 5531-5546, math-ph/0411006.
  31. Mailybaev A.A., Kirillov O.N., Seyranian A.P., Geometric phase around exceptional points, Phys. Rev. A 72 (2005), 014104, 4 pages, quant-ph/0501040.
  32. Seyranian A.P., Kirillov O.N., Mailybaev A.A., Coupling of eigenvalues of complex matrices at diabolic and exceptional points, J. Phys. A: Math. Gen. 38 (2005), 1723-1740, math-ph/0411024.
  33. Mailybaev A.A., Kirillov O.N., Seyranian A.P., The Berry phase in a neighborhood of degenerate states, Dokl. Akad. Nauk 406 (2006), 464-468.
  34. Giri P.R., Lower bound of minimal time evolution in quantum mechanics, Internat. J. Theoret. Phys. 47 (2008), 2095-2100, arXiv:0706.3653.
  35. Geyer H.B., Heiss W.D., Scholtz F.G., Non-Hermitian Hamiltonians, metric, other observables and physical implications, arXiv:0710.5593.
  36. Garrison J.C., Wright E.M., Complex geometrical phases for dissipative systems, Phys. Lett. A 128 (1988), 177-181.
  37. Lamb W.E., Schlicher R.R., Scully M.O., Matter-field interaction in atomic physics and quantum optics, Phys. Rev. A 36 (1987), 2763-2772.
  38. Baker H.C., Non-Hermitian quantum theory of multiphoton ionization, Phys. Rev. A 30 (1984), 773-793.
  39. Stafford C.A., Barrett B.R., Simple model for decay of superdeformed nuclei, Phys. Rev. C 60 (1999), 051305, 4 pages, nucl-th/9906052.
  40. Dietz B., Friedrich T., Metz J., Miski-Oglu M., Richter A., Schäfer F., Stafford C.A., Rabi oscillations at exceptional points in microwave billiards, Phys. Rev. E 75 (2007), 027201, 4 pages, cond-mat/0612547.
  41. Anandan J., Aharonov Y., Geometry of quantum evolution, Phys. Rev. Lett. 65 (1990), 1697-1700.
  42. Aharonov Y., Anandan J., Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (1987), 1593-1596.

Previous article   Next article   Contents of Volume 5 (2009)