Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 053, 22 pages      arXiv:0905.0589      http://dx.doi.org/10.3842/SIGMA.2009.053
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators''

An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais-Uhlenbeck Oscillator

A. Déctor a, H.A. Morales-Técotl a, b, L.F. Urrutia a and J.D. Vergara a
a) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. Postal 70-543, México D.F., México
b) Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, CP 09340, México D.F., México

Received November 14, 2008, in final form April 22, 2009; Published online May 05, 2009

Abstract
Our purpose in this paper is to analyze the Pais-Uhlenbeck (PU) oscillator using complex canonical transformations. We show that starting from a Lagrangian approach we obtain a transformation that makes the extended PU oscillator, with unequal frequencies, to be equivalent to two standard second order oscillators which have the original number of degrees of freedom. Such extension is provided by adding a total time derivative to the PU Lagrangian together with a complexification of the original variables further subjected to reality conditions in order to maintain the required number of degrees of freedom. The analysis is accomplished at both the classical and quantum levels. Remarkably, at the quantum level the negative norm states are eliminated, as well as the problems of unbounded below energy and non-unitary time evolution. We illustrate the idea of our approach by eliminating the negative norm states in a complex oscillator. Next, we extend the procedure to the Pais-Uhlenbeck oscillator. The corresponding quantum propagators are calculated using Schwinger's quantum action principle. We also discuss the equal frequency case at the classical level.

Key words: quantum canonical transformations; higher order derivative models.

pdf (309 kb)   ps (202 kb)   tex (25 kb)

References

  1. Thirring W., Regularization as a consequence of higher order equations, Phys. Rev. 77 (1950), 570.
  2. Pais A., Uhlenbeck G.E., On field theories with nonlocalized action, Phys. Rev. 79 (1950), 145-165.
  3. Heisenberg W., Lee model and quantisation of non linear field theories, Nuclear Phys. 4 (1957), 532-563.
  4. Stelle K.S., Renormalization of higher-derivative quantum gravity, Phys. Rev. D 16 (1977), 953-969.
  5. Tomboulis E.T., Unitarity in higher derivative quantum gravity, Phys. Rev. Lett. 52 (1984), 1173-1176.
  6. Hawking S.W., Hertog T., Living with ghosts, Phys. Rev. D 65 (2002), 103515, 8 pages, hep-th/0107088.
  7. Moeller N., Zwiebach B., Dynamics with infinitely many time derivatives and rolling tachyons, J. High Energy Phys. 2002 (2002), no. 10, 034, 39 pages, hep-th/0207107.
  8. Rivelles V.O., Triviality of higher derivative theories, Phys. Lett. B 577 (2003), 137-142, hep-th/0304073.
  9. Antoniadis I., Dudas E., Ghilencea D.M., Living with ghosts and their radiative corrections, Nuclear Phys. B 767(2007), 29-53, hep-th/0608094.
  10. Codello A., Percacci R., Fixed points of higher-derivative gravity, Phys. Rev. Lett. 97 (2006), 221301, 4 pages, hep-th/0607128.
  11. Berkovits N., New higher-derivative R4 theorems, Phys. Rev. Lett. 98 (2007), 211601, 4 pages, hep-th/0609006.
  12. Jaen X., Llosa J., Molina A., A reduction of order two for infinite order Lagrangians, Phys. Rev. D 34 (1986), 2302-2311.
  13. Eliezer D.A., Woodard R.P., The problem of nonlocality in string theory, Nuclear Phys. B 325 (1989), 389-469.
  14. Cheng T.C., Ho P.M., Yeh M.C., Perturbative approach to higher derivative and nonlocal theories, Nuclear Phys. B 625 (2002), 151-165, hep-th/0111160.
  15. Simon J.Z., Higher derivative Lagrangians, non-locality, problems and solutions, Phys. Rev. D 41 (1990), 3720-3733.
  16. Bender C.M., Mannheim P.D., No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008), 110402, 4 pages, arXiv:0706.0207.
  17. Bender C.M., Mannheim P.D., Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart, Phys. Rev. D 78 (2008), 025022, 20 pages, arXiv:0804.4190.
  18. Bender C.M., Mannheim P.D., Giving up the ghost, J. Phys. A: Math. Theor. 41 (2008), 304018, 7 pages, arXiv:0807.2607.
  19. Smilga A.V., Benign vs. malicious ghosts in higher-derivative theories, Nuclear Phys. B 706 (2005), 598-614, hep-th/0407231.
  20. Smilga A.V., Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006), 433-438, hep-th/0503213.
  21. Smilga A.V., Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009), 017, 13 pages, arXiv:0808.0139.
  22. Smilga A.V., Exceptional points in quantum and classical dynamics, J. Phys. A: Math. Theor. 42 (2009), 095301, 9 pages, arXiv:0808.0575.
  23. Bender C.M., Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), 947-1018, hep-th/0703096.
  24. Ashtekar A., Lectures on nonperturbative canonical gravity, Advanced Series in Astrophysics and Cosmology, Vol. 6, World Scientific, Singapore, 1991.
  25. Ashtekar A., Mathematical problems of nonperturbative quantum general relativity, gr-qc/9302024.
  26. Thiemann T., Reality conditions inducing transforms for quantum gauge field theory and quantum gravity, Classical Quantum Gravity 13 (1996), 1383-1403, gr-qc/9511057.
  27. Ashtekar A., A generalized Wick transform for gravity, Phys. Rev. D 53 (1996), 2865-2869, gr-qc/9511083.
  28. Montesinos M., Morales-Técotl H.A., Urrutia L.F., Vergara J.D., Complex canonical gravity and reality constraints, Gen. Relativity Gravitation 31 (1999), 719-723.
  29. Rovelli C., Quantum gravity, Cambridge University Press, Cambridge, 2004.
  30. Thiemann T., Modern canonical quantum general relativity, Cambridge University Press, Cambridge, 2007.
  31. Ostrogradsky M., Mémoires sur les équations différentielles relatives aux problèmes des isopérimètres, Mem. Acad. St. Petersbourg VI 4 (1850), 385-517.
  32. Swanson M.S., Transition elements for a non-Hermitian quadratic Hamiltonian, J.  Math.  Phys. 45 (2004), 585-601.
  33. Jones H.F., On pseudo-Hermitian Hamiltonians and their Hermitian counterparts, J. Phys. A: Math. Gen. 38 (2005), 1741-1746, quant-ph/0411171.
  34. Ivanov E.A., Smilga A.V., Cryptoreality of nonanticommutative Hamiltonians, J. High Energy Phys. 2007 (2007), no. 07, 036, 16 pages, hep-th/0703038.
  35. Anderson A., Canonical transformations in quantum mechanics, Ann. Physics 232 (1994), 292-331, hep-th/9305054.
  36. Anderson A., Quantum canonical transformations: physical equivalence of quantum theories, Phys. Lett. B 305 (1993), 67-70, hep-th/9302062.
  37. Schwinger J., Quantum mechanics, symbolism of atomic measurements, Springer-Verlag, Berlin, 2001.
  38. Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, 1992.
  39. Dirac P.A.M., Lectures on quantum mechanics, Belfast Graduate School of Science, New York, 1964.
  40. Senjanovic P., Path integral quantization of field theories with second class constraints, Ann. Physics 100 (1976), 227-261, Erratum, Ann. Physics 209 (1991), 248.
  41. Mannheim P.D., Davidson A., Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Phys. Rev. A 71 (2005), 042110, 9 pages, hep-th/0408104.
  42. Alexandrov S.Y., Vassilevich D.V., Path integral for the Hilbert-Palatini and Ashtekar gravity, Phys. Rev. D 58 (1998), 124029, 13 pages, gr-qc/9806001.
  43. Mannheim P.D., Solution to the ghost problem in fourth order derivative theories, Found. Phys. 37 (2007), 532-571, hep-th/0608154.

Previous article   Next article   Contents of Volume 5 (2009)