Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 049, 21 pages      arXiv:0904.3250      http://dx.doi.org/10.3842/SIGMA.2009.049
Contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions”

Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case

Simon N.M. Ruijsenaars a, b
a) Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
b) Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

Received January 19, 2009; Published online April 21, 2009

Abstract
The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d2/dx2+V(g;x), where the potential is an elliptic function depending on a coupling vector gR4. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L2([0,ω1],dx), where 2ω1 is the real period of V(g;x). For this association and a further analysis of H(g), a certain Hilbert-Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector cR4 that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S4.

Key words: Heun equation; Hilbert-Schmidt operators; spectral invariance.

pdf (317 kb)   ps (199 kb)   tex (22 kb)

References

  1. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type I. The eigenfunction identities, Comm. Math. Phys. 286 (2009), 629-657.
  2. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type II. The AN−1 case: First steps, Comm. Math. Phys. 286 (2009), 659-680.
  3. Ruijsenaars S.N.M., Elliptic integrable systems of Calogero-Moser type: Some new results on joint eigenfunctions, in Proceedings of the 2004 Kyoto Workshop on Elliptic integrable systems, Editors M. Noumi and K. Takasaki, Rokko Lectures in Math., Dept. of Math., Kobe Univ., 2004, 223-240.
  4. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge University Press, Cambridge, 1973.
  5. Inozemtsev V.I., Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys. 17 (1989), 11-17.
  6. Ronveaux A. (Editor), Heun's differential equations, Oxford University Press, Oxford, 1995.
  7. Sleeman B.D., Kuznetsov V.B., Heun functions, Chapter HE in Handbook of mathematical functions, Editor F. Olver, to appear.
  8. Maier R., The 192 solutions of the Heun equation, Math. Comp. 76 (2007), 811-843, math.CA/0408317.
  9. Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages, arXiv:0810.3112.
  10. Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.
  11. Slavyanov S.Y., Lay W., Special functions. A unified theory based on singularities, Oxford University Press, Oxford, 2000.
  12. Kazakov A.Y., Slavyanov S.Y., Integral relations for Heun-class special functions, Theoret. and Math. Phys. 107 (1996), 733-739.
  13. Takemura K., Integral representation of solutions to Fuchsian system and Heun's equation, J. Math. Anal. Appl. 342 (2008), 52-69, arXiv:0705.3358.
  14. Ruijsenaars S.N.M., First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), 1069-1146.
  15. Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972.
  16. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type IV. The relativistic Heun (van Diejen) case, in preparation.
  17. Takemura K., The Heun equation and the Calogero-Moser-Sutherland system. II. Perturbation and algebraic solution, Electron. J. Differential Equations 2004 (2004), no. 15, 30 pages, math.CA/0112179.
  18. Ruijsenaars S.N.M., Integrable BCN analytic difference operators: Hidden parameter symmetries and eigenfunctions, in Proceedings Cadiz 2002 NATO Advanced Research Workshop "New trends in integrability and partial solvability", NATO Science Series, Vol. 132, Editors A.B. Shabat, A. González-López, M. Mañas, L. Martínez Alonso and M.A. Rodríguez, Kluwer, Dordrecht, 2004, 217-261.
  19. Arscott F.M., Periodic differential equations, Pergamon Press, London, 1964.
  20. Koekoek R., Swarttouw R.W., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17, 1998, math.CA/9602214.

Previous article   Next article   Contents of Volume 5 (2009)