Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 014, 17 pages      math.QA/0210264
Contribution to the Special Issue on Kac-Moody Algebras and Applications

Simple Finite Jordan Pseudoalgebras

Pavel Kolesnikov
Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Received September 12, 2008, in final form January 10, 2009; Published online January 30, 2009

We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.

Key words: Jordan pseudoalgebra; conformal algebra; TKK-construction.

pdf (300 kb)   ps (202 kb)   tex (22 kb)


  1. Bakalov B., D'Andrea A., Kac V.G., Theory of finite pseudoalgebras, Adv. Math. 162 (2001), 1-140, math.QA/0007121.
  2. Beilinson A.A., Drinfeld V.G., Chiral algebras, American Mathematical Society Colloquium Publications, Vol. 51, American Mathematical Society, Providence, RI, 2004.
  3. Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333-380.
  4. Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068-3071.
  5. D'Andrea A., Kac V.G., Structure theory of finite conformal algebras, Selecta Math. (N.S.) 4 (1998), 377-418.
  6. Fattori D., Kac V.G., Classification of finite simple Lie conformal superalgebras, J. Algebra 258 (2002), 23-59, math-ph/0106002.
  7. Kac V.G., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.
  8. Kac V.G., Formal distribution algebras and conformal algebras, in Proceedinds of XII-th International Congress in Mathematical Physics (ICMP'97) (Brisbane), Int. Press, Cambridge, MA, 1999, 80-97, q-alg/9709027.
  9. Kac V.G., Retakh A., Simple Jordan conformal superalgebras, J. Algebra Appl. 7 (2008), 517-533, arXiv:0801.0755.
  10. Kantor I.L., Classification of irreducible transitively differential groups, Soviet Math. Dokl. 5 (1965), 1404-1407.
  11. Koecher M., Embedding of Jordan algebras into Lie algebras. I, Amer. J. Math. 89 (1967), 787-816.
  12. Koecher M., Embedding of Jordan algebras into Lie algebras. II, Amer. J. Math. 90 (1968), 476-510.
  13. Kolesnikov P.S., Identities of conformal algebras and pseudoalgebras, Comm. Algebra 34 (2006), no. 6, 1965-1979, math.RA/0412397.
  14. Lambek J., Deductive systems and categories II. Standard constructions and closed categories, in Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, 76-122.
  15. Roitman M., On free conformal and vertex algebras, J. Algebra 217 (1999), 496-527, math.QA/9809050.
  16. Sweedler M.E., Cocommutative Hopf algebras with antipode, Bull. Amer. Math. Soc. 73 (1967), 126-128.
  17. Sweedler M.E., Hopf algebras, Mathematics Lecture Note Series, W.A. Benjamin, Inc., New York, 1969.
  18. Tits J., Une classe d'algebres de Lie en relation avec algebres de Jordan, Indag. Math. 24 (1962), 530-535.
  19. Zelmanov E.I., On the structure of conformal algebras, in Proceedings of Intern. Conf. on Combinatorial and Computational Algebra, (May 24-29, 1999, Hong Kong) Contemp. Math. 264 (2000), 139-153.
  20. Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings that are nearly associative, Pure and Applied Mathematics, Vol. 104, Academic Press, Inc., New York - London, 1982.

Previous article   Next article   Contents of Volume 5 (2009)