Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 009, 76 pages      arXiv:0901.3473
Contribution to the Special Issue on Kac-Moody Algebras and Applications

Self-Consistent-Field Method and τ-Functional Method on Group Manifold in Soliton Theory: a Review and New Results

Seiya Nishiyama a, João da Providência a, Constança Providência a, Flávio Cordeiro b and Takao Komatsu c
a) Centro de Física Teórica, Departamento de Física, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
b) Mathematical Institute, Oxford OX1 3LB, UK
c) 3-29-12 Shioya-cho, Tarumi-ku, Kobe 655-0872, Japan

Received September 05, 2008, in final form January 10, 2009; Published online January 22, 2009

The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD) self-consistent field (SCF) theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature C = 0. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e., υ (external parameter)-dependent Hartree-Fock (HF) theory. Toward such an ultimate goal, the υ-HF theory has been reconstructed on an affine Kac-Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent potential with a Υ-periodicity. A bilinear equation for the υ-HF theory has been transcribed onto the corresponding τ-function using the regular representation for the group and the Schur-polynomials. The υ-HF SCF theory on an infinite-dimensional Fock space F leads to a dynamics on an infinite-dimensional Grassmannian Gr and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a Gr which is affiliated with the group manifold obtained by reducting gl(∞) to sl(N) and su(N). As an illustration we will study an infinite-dimensional matrix model extended from the finite-dimensional su(2) Lipkin-Meshkov-Glick model which is a famous exactly-solvable model.

Key words: self-consistent field theory; collective theory; soliton theory; affine KM algebra.

pdf (845 kb)   ps (486 kb)   tex (94 kb)


  1. Komatsu T., Nishiyama S., Self consistent field method and τ-functional method on group manifold in soliton theory, in Proceedings of the Sixth International Wigner Symposium, Bogazici University Press, Istanbul, 2002, 381-409.
  2. Ring P., Schuck P., The nuclear many-body problem, Springer, Berlin, 1980.
  3. Fukutome H., Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions, Int. J. Quantum Chem. 20 (1981), 955-1065.
  4. Thouless D.J., Stability conditions and nuclear rotations in the Hartree-Fock theory, Nuclear Phys. 21 (1960), 225-232.
  5. Perelomov A.M., Coheret states for arbitrary Lie group, Comm. Math. Phys. 26 (1972), 222-236.
    Perelomov A.M., Generalized coherent states and some of their applications, Soviet Phys. Uspekhi 20 (1977), 703-720.
  6. Yamamura M., Kuriyama A., Time-dependent Hartree-Fock method and its extension, Progr. Theoret. Phys. Suppl. 93 (1987), 1-175.
  7. Arvieu R., Vérénoni M., Quasi-particles and collective states of spherical nuclei, Compt. Rend. 250 (1960), 992-994.
    Vérénoni M., Arvieu R., Quasi-particles and collective states of spherical nuclei, Compt. Rend. 250 (1960), 2155-2157.
    Baranger M., Extension of the shell model for heavy spherical nuclei, Phys. Rev. 120 (1960), 957-968.
    Marumori T., On the collective motion in even-even spherical nuclei, Progr. Theoret. Phys. 24 (1960), 331-356.
  8. Mottelson B.R., Nuclear structure, the many body problem, le problème à N corps, Lectures at Les Houches Summer School, Paris, Dunod, 1959, 283-315.
  9. Bogoliubov N.N., The compensation principle and the self-consistent field method, Soviet Phys. Uspekhi 67 (1959), 236-254.
  10. Belyaev S.T., Zelevinsky V.G., Anharmonic effects of quadrupole oscillations of spherical nuclei, Nuclear Phys. 39 (1962), 582-604.
  11. Marumori T., Yamamura M., Tokunaga A., On the "anharmonic effects" on the collective oscillations i spherical even nuclei. I, Prog. Theoret. Phys. 31 (1964), 1009-1025.
  12. da Providência J., An extension of the random phase approximation, Nuclear Phys. A 108 (1968), 589-608.
    da Providência J., Weneser J., Nuclear ground-state correlations and boson expansions, Phys. Rev. C 1 (1970), 825-833.
    Marshalek E.R., On the relation between Beliaev-Zelevinsky and Marumori boson expansions, Nuclear Phys. A 161 (1971), 401-409.
  13. Yamamura M., Nishiyama S., An a priori quantized time-dependent Hartree-Bogoliubov theory. A generalization of the Schwinger representation of quasi-spin to the fermion pair algebra, Prog. Theoret. Phys. 56 (1976), 124-134.
  14. Fukutome H., Yamamura M., Nishiyama S., A new fermion many-body theory based on the SO(2N+1) Lie algebra of the fermion operators, Prog. Theoret. Phys. 57 (1977), 1554-1571.
    Fukutome H., Nishiyama S., Time dependent SO(2N+1) theory for unified description of bose and fermi type collective excitations, Prog. Theoret. Phys. 72 (1984), 239-251.
    Nishiyama S., Microscopic theory of large-amplitude collective motions based on the SO(2N+1) Lie algebra of the fermion operators, Nuovo Cimento A 99 (1988), 239-256.
  15. Fukutome H., On the SO(2N+1) regular representation of operators and wave functions of fermion many-body systems, Prog. Theoret. Phys. 58 (1977), 1692-1708.
  16. Fukutome H., The group theoretical structure of fermion many-body systems arising from the canonical anticommutation relation. I. Lie algebras of fermion operators and exact generator coordinate representations of state vectors, Prog. Theoret. Phys. 65 (1981), 809-827.
  17. Nishiyama S., Komatsu T., Integrability conditions for a determination of collective submanifolds. I. Group-theoretical aspects, Nuovo Cimento A 82 (1984), 429-442.
    Nishiyama S., Komatsu T., Integrability conditions for a determination of collective submanifolds. II. On the validity of the maximally decoupled theory, Nuovo Cimento A 93 (1984), 255-267.
    Nishiyama S., Komatsu T., Integrability conditions for a determination of collective submanifolds. III. An investigation of the nonlinear time evolution arising from the zero-curvature equation, Nuovo Cimento A 97 (1987), 513-522.
  18. Nishiyama S., Time dependent Hartree-Bogoliubov equation on the coset space SO(2N+2)/U(N+1) and quasi anti-commutation relation approximation, Internat. J. Modern Phys. E 7 (1998), 677-707.
  19. Nishiyama S., Path integral on the coset space of the SO(2N) group and the time-dependent Hartree-Bogoliubov equation, Prog. Theoret. Phys. 66 (1981), 348-350.
    Nishiyama S., Note on the new type of the SO(2N+1) time-dependent Hartree-Bogoliubov equation, Prog. Theoret. Phys. 68 (1982), 680-683.
  20. Nishiyama S., An equation for the quasi-particle RPA based on the SO(2N+1) Lie algebra of the fermion operators, Prog. Theoret. Phys. 69 (1983), 1811-1814.
  21. Marshalek E.R., Holzwarth G., Boson expansions and Hartree-Bogoliubov theory, Nuclear Phys. A 191 (1972), 438-448.
  22. Thouless D.J., Valatin J.G., Time-dependent Hartree-Fock equations and rotational states of nuclei, Nuclear Phys. 31 (1962), 211-230.
  23. Baranger M., Veneroni M., An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems, Ann. Physics 114 (1978), 123-200.
    Brink D.M., Giannoni M.J., Veneroni M., Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle, Nuclear Phys. A 258 (1976), 237-256.
    Villars F.H., Adiabatic time-dependent Hartree-Fock theory in nuclear physics, Nuclear Phys. A 285 (1977), 269-296.
    Goeke K., Reinhard P.-G., A consistent microscopic theory of collective motion in the framework of an ATDHF approach, Ann. Physics 112 (1978), 328-355.
    Mukherjee A.K., Pal M.K., Evaluation of the optimal path in ATDHF theory, Nuclear Phys. A 373 (1982), 289-304.
  24. Holzwarth G., Yukawa T., Choice of the constraining operator in the constrained Hartree-Fock method, Nuclear Phys. A 219 (1974), 125-140.
    Rowe D.J., Bassermann R., Coherent state theory of large amplitude collective motion, Canad. J. Phys. 54 (1976), 1941-1968.
  25. Marumori T., Maskawa T., Sakata F., Kuriyama A., Self-consistent collective coordinate method for the large-amplitude nuclear collective motion, Prog. Theoret. Phys. 64 (1980), 1294-1314.
  26. Casalbuoni R., The classical mechanics for bose-fermi systems, Nuovo Cimento A 33 (1976), 389-431.
    Berezin F.A., The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press, New York - London, 1966.
    Candlin D., On sums over trajectories for systems with fermi statistics, Nuovo Cimento 4 (1956), 231-239.
  27. Yamamura M., Kuriyama A., A microscopic theory of collective and independent-particle motions, Prog. Theoret. Phys. 65 (1981), 550-564.
    Yamamura M., Kuriyama A., An approximate solution of equation of collective path and random phase approximation, Prog. Theoret. Phys. 65 (1981), 755-758.
    Kuriyama A., Yamamura M., A note on specification of collective path, Prog. Theoret. Phys. 65 (1981), 759-762.
  28. Ablowitz J., Kaup J., Newell C., Segur H., The inverse scattering transform-Fourier analisys for nonlinear problems, Studies in Appl. Math. 53 (1974), 249-315.
  29. Sattinger D.H., Gauge theories for soliton problems, in Nonlinear Problems: Present and Future (Los Alamos, N.M., 1981), Editors A.R. Bishop, D.K. Cambell and B. Nicolaenko, North-Holland Math. Stud., Vol. 61, North-Holland, Amsterdam - New York, 1982, 51-64.
  30. Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations, in Nonlinear Integrable Systems: Classical Theory and Quantum Theory (Kyoto, 1981), Editors M. Jimbo and T. Miwa, World Sci. Publishing, Singapore, 1983, 39-119.
  31. D'Ariano G.M., Rasetti M.G., Soliton equations, τ-functions and coherent states, in Integrable Systems in Statistical Mechanics, Editors G.M. D'Ariano, A. Montorsi and M.G. Rasetti, Ser. Adv. Statist. Mech., Vol. 1, World Sci. Publishing, Singapore, 1985 143-152.
    D'Ariano G.M., Rasetti M.G., Soliton equations and coherent states, Phys. Lett. A 107 (1985), 291-294.
  32. Komatsu T., Nishiyama S., Self-consistent field method from a τ-functional viewpoint, J. Phys. A: Math. Gen. 33 (2000), 5879-5899.
  33. Komatsu T., Nishiyama S., Toward a unfied algebraic understanding of concepts of particle and collective motions in fermion many-body systems, J. Phys. A: Math. Gen. 34 (2001), 6481-6493.
  34. Nishiyama S., Komatsu T., RPA equation embeded into infinite-dimensional Fock space F, Phys. Atomic Nuclei 65 (2002), 1076-1082.
  35. Nishiyama S., da Providência J., Komatsu T., The RPA equation embeded into infinite-dimensional Fock space F, J. Phys. Math. Gen. A 38 (2005), 6759-6775.
  36. Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986.
  37. Nishiyama S., Morita H., Ohnishi H., Group-theoretical deduction of a dyadic Tamm-Dancoff equation by using a matrix-valued coordinate, J. Phys. A: Math. Gen. 37 (2004), 10585-10607.
  38. Sato M., Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku 439 (1981), 30-46.
  39. Hirota R., Direct method of finding exact solutions of nonlinear evolution equation, in Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, Tenn., 1974), Editor R.M. Miura, Lecture Notes in Math., Vol. 515, Springer, Berlin, 1976, 40-68.
  40. Dirac P.A M., The principles of quantum mechanics, 4th ed., Oxford University Press, 1958.
  41. Nishiyama S., da Providência J., Komatsu T., Self-consistent field-method and τ-functional method on group manifold in soliton theory. II. Laurent coefficients of solutions for ^sln and for ^sun, J. Math. Phys. 48 (2007), 053502, 16 pages.
  42. Lipkin H.J., Meshkov N., Glick A.J., Validity of many-body approximation methods for a solvable model. I. Exact solutions and perturbation theory, Nuclear Phys. 62 (1965), 188-198.
  43. Rajeev S.G., Quantum hydrodynamics in two dimensions, Internat. J. Modern Phys. A 9 (1994), 5583-5624.
  44. Rajeev S.G., Turgut O.T., Geometric quantization and two dimensional QCD, Comm. Math. Phys. 192 (1998), 493-517, hep-th/9705103.
  45. Toprak E., Turgut O.T., Large N limit of SO(2N) scalar gauge theory, J. Math. Phys. 43 (2002), 1340-1352, hep-th/0201193.
    Toprak E., Turgut O.T., Large N limit of SO(2N) gauge theory of fermions and bosons, J. Math. Phys. 43 (2002), 3074-3096, hep-th/0201192.
  46. Rowe D.J., Ryman A., Rosensteel G., Many-body quantum mechanics as a symplectic dynamical system, Phys. Rev. A 22 (1980), 2362-2373.
  47. Goddard P., Olive D., Kac-Moody and Virasoro algebras in relation to quantum physics, Internat. J. Modern Phys. A 1 (1986), 303-414.
  48. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
    Kac V.G., Vertex algebras for beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1997.
  49. Kac V.G., Raina A.K., Bombay lectures on highest weight representation of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, Vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987.
  50. Nishiyama S., Komatsu T., Integrability conditions for a determination of collective submanifolds. A solution procedure, J. Phys. G: Nucl. Part. Phys. 15 (1989), 1265-1274.
  51. Jimbo M., Miwa T., Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
  52. Dickey L.A., Soliton equations and Hamiltonian system, Advanced Series in Mathematical Physics, Vol. 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
  53. Orlov A.Yu., Winternitz P., P algebra of KP, free fermions and 2-cocylcle in the Lie algebra of pseudodifferential operators, Internat. J. Modern Phys. B 11 (1997), 3159-3193, solv-int/9701008.
    Orlov A.Yu., Winternitz P., Algebra of pseudodifferential operators and symmetries of equations in the Kadomtsev-Petviashvili hierarchy, J. Math. Phys. 38 (1997), 4644-4674.
  54. Kac V.G., Peterson D., Lectures on infinite wedge representation and MKP hierarcy, in Systèmes dynamiques non linéaires: intégrabilité et comportement qualitatif, Sem. Math. Sup., Vol. 102, Presses Univ. Montréal, Montreal, QC, 1986, 141-186.
  55. Nogami Y., Warke C.S., Exactly solvable time-dependent Hartree-Fock equations, Phys. Rev. C 17 (1978), 1905-1913.
  56. Boiti M., Léon J.J.-P., Martina L., Pempinelli F., Scattering of localized solitons in the plane, Phys. Lett. A 132 (1988), 432-439.
  57. Fokas A.S., Santini P.M., Coherent structures in multidimensions, Phys. Rev. Lett. 63 (1989), 1329-1333.
    Fokas A.S., Santini P.M., Dromions and a boundary value problem for the Davey-Stewartson equation, Phys. D 44 (1990), 99-130.
  58. Davey A., Stewartson K., On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101-110.
  59. Hietrinta J., Hirota R., Multidromion solutions to the Davey-Stewartson equation, Phys. Lett. A 145 (1990), 237-244.
  60. Jaulent M., Manna M.A., Martinez-Alonso L., Fermionic analysis of Davey-Stewartson dromions, Phys. Lett. A 151 (1990), 303-307.
  61. Kac V.G., van de Leur J.W., The n-component KP hierarchy and representation theory, in Important Developments in Soliton Theory, Editors A.S. Fokas and V.E. Zakharov, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 302-343.
    Kac V.G., van de Leur J.W., The n-component KP hierarchy and representation theory. Integrability, topological solitons and beyond, J. Math. Phys. 44 (2003), 3245-3293, hep-th/9308137.
  62. Hernandes Heredero R., Martinez-Alonso L., Medina Reus E., Fusion and fission of dromions in the Davey-Stewartson equation, Phys. Lett. A 152 (1991), 37-41.
  63. Pan F., Draayer J.P., New algebraic approach for an exact solution of the nuclear mean-field plus orbit-dependent pairing Hamiltonian, Phys. Lett. B 442 (1998), 7-13.
    Pan F., Draayer J.P., Analytical solutions for the LMG model, Phys. Lett. B 451 (1999), 1-10.
  64. Bethe H., On the theory of metals. I. Eigenvalues and eignefunctions of a linear chain of atoms, Zeits. Physik 71 (1931), 205-226.
  65. Richardson R.W., Exact eigenstates of the pairing-force Hamiltonian. II, J. Math. Phys. 6 (1965), 1034-1051.
  66. Date E., Jimbo M., Kashiwara M., Miwa T., Operator approach to the Kadomtsev-Petviashvili equation. III. Transformation groups for soliton equations, J. Phys. Soc. Japan 50 (1981), 3806-3812.
  67. de Kerf E.A., Bäuerle G.G.A., Kroode A.P.E., Lie algebras, Part 2, Finite and infinite dimensional Lie algebras and applications in physics, Studies in Mathematical Physics, Vol. 7, North-Holland Publishing Co., Amsterdam, 1997.
  68. Adler M., van Moerbeke P., Birkhoff strata, Bäcklund transformations and regularization of isospectral operators, Adv. Math. 108 (1994), 140-204.
    Grinevich P.G., Orlov A.Yu., Virasoro action on Riemann surfaces, Grassmannians, det ∂J and Segal-Wilson τ-function, in Problems of Modern Quantum Field Theory (Alushta, 1989), Editors A.A. Belavin, A.U. Klimyk and A.B. Zamolodchikov, Research Reports in Physics, Springer-Verlag, Berlin, 1989, 86-106.
  69. Komatsu T., Self consistent field method and τ-functional method in fermion many-body systems, Doctoral Thesis, Osaka Prefecture University, 2000.
  70. Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490.
  71. Lepowsky J., Wilson R.L., Construction of the affine Lie algebra A1(1), Comm. Math. Phys. 62 (1978), 43-53.
  72. Mansfield P., Solution of the initial value problem for the sine-Gordon equation using a Kac-Moody algebra, Comm. Math. Phys. 98 (1985), 525-537.
  73. Hayashi A., Iwasaki S., A large amplitude collective motion in a nontrivial schematic model, Prog. Theoret. Phys. 63 (1980), 1063-1066.
  74. Kuriyama A., Yamamura M., Iida S., Specification of collective submanifold by adiabatic time-dependent Hartree-Fock method, Prog. Theoret. Phys. 72 (1984), 1273-1276.
  75. Bettelheim E., Abanov A.G., Wiegmann P.B., Nonlinear dynamics of quantum systems and soliton theory, J. Phys. A: Math. Theor. 40 (2007), F193-F208, nlin.SI/0605006.
    Bettelheim E., Abanov A.G., Wiegmann P.B., Orthogonality catastrophe and shock waves in a nonequilibrium Fermi gas, Phys. Rev. Lett. 97 (2006), 246402, 4 pages, cond-mat/0607453.
  76. Morita H., Ohnishi H., da Providência J., Nishiyama S., Exact solutions for the LMG model Hamiltonian based on the Bethe ansatz, Nuclear Phys. B 737 (2006), 337-350.
  77. Nishiyama S., Application of the resonating Hartree-Fock theory to the Lipkin model, Nuclear Phys. A 576 (1994), 317-350.
    Nishiyama S., Ido M., Ishida K., Parity-projected resonating Hartree-Fock approximation to the Lipkin model, Internat. J. Modern Phys. E 8 (1999), 443-460.
  78. Gaudin M., Diagonalisation d'une classe d'Hamiltoniens de spin, J. Physique 37 (1976), 1089-1098.
    Gaudin M., La Fonction d'Onde de Bethe, Masson, Paris, 1983.
  79. Sklyanin E.K., Generating function of correlators in the sl2 Guadin model, Lett. Math. Phys. 47 (1999), 275-292, solv-int/9708007.
  80. Oritz G., Somma R., Dukelsky J., Rombouts S., Exactly-solvable models derived from a generalized Gaudin algebra, Nuclear Phys. B 707 (2005), 421-457.
  81. Boyd J.P., New directions in solitons and nonlinear periodic waves: Polycnoidal waves, imbricated solitons, weakly non-local solitary waves and numerical boundary value algorithms, Advances in Applied Mechanics, Vol. 27, Editors J.W. Hutchinson and T.Y. Wu, Academic Press, Inc., Boston, MA, 1989, 1-82.
  82. Tajiri M., Watanabe Y., Periodic wave solutions as imbricate series of rational growing modes: solutions to the Boussinesq equation, J. Phys. Soc. Japan 66 (1997), 1943-1949.
    Tajiri M., Watanabe Y., Breather solutions to the focusing nonlinear Schrödinger equation, Phys. Rev. E 57 (1998), 3510-3519.
  83. Fukutome H., Theory of resonating quantum fluctuations in a fermion system, Prog. Theoret. Phys. 80 (1988), 417-432.
    Nishiyama S., Fukutome H., Resonating Hartree-Bogoliubov theory for a superconducting fermion system with large quantum fluctuations, Prog. Theoret. Phys. 85 (1991), 1211-1222.
  84. Tosiya T., General theory, reductive perturbation method and far fields of wave equations, Part 1, Prog. Theoret. Phys. Suppl. 55 (1974), 1-35.
  85. Mickelsson J., Current algebras and groups, Plenum Monographs in Nonlinear Physics, Plenum Press, New York, 1989.
    Ottesen J.T., Infinite-dimensional groups and algebras in quantum physics, Lecture Note in Physics, New Series m: Monographs, Vol. 27, Springer-Verlag, Berlin, 1995.
  86. Nishiyama S., First-order approximation of the number-projected SO(2N) Tamm-Dancoff equation and its reduction by the Schur function, Internat. J. Modern Phys. E 8 (1999), 461-483.
  87. Howe R.M., Dual representations of GL and decomposition of Fock spaces, J. Phys. A: Math. Gen. 30 (1997), 2757-2781.
  88. Rowe D.J., Song T., Chen H., Unified pair-coupling theory of fermion systems, Phys. Rev. C 44 (1991), R598-R601.
    Chen H., Song T., Rowe D. J., The pair-coupling model, Nuclear Phys. A 582 (1995), 181-204.
  89. Littlewood D.E., The theory of group characters and matrix representation of groups, Clarendon, Oxford, 1958.
    MacDonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979.
    Weiner B., Deumens E., Öhrn Y., Coherent state approach to electron nuclear dynamics with an antisymmetrized geminal power state, J. Math. Phys. 35 (1994), 1139-1170.

Previous article   Next article   Contents of Volume 5 (2009)