Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 5 (2009), 006, 4 pages      arXiv:0901.2335      http://dx.doi.org/10.3842/SIGMA.2009.006
Contribution to the Proceedings of the XVIIth International Colloquium on Integrable Systems and Quantum Symmetries

Heisenberg-Type Families in Uq(^sl2)

Alexander Zuevsky
Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Received October 20, 2008, in final form January 13, 2009; Published online January 15, 2009

Abstract
Using the second Drinfeld formulation of the quantized universal enveloping algebra Uq(^sl2) we introduce a family of its Heisenberg-type elements which are endowed with a deformed commutator and satisfy properties similar to generators of a Heisenberg subalgebra. Explicit expressions for new family of generators are found.

Key words: quantized universal enveloping algebras; Heisenberg-type families.

pdf (171 kb)   ps (126 kb)   tex (8 kb)

References

  1. Drinfel'd V.G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-216.
  2. Enriquez B., Quantum principal commutative subalgebra in the nilpotent part of Uqsl2 and lattice KdV variables, Comm. Math. Phys. 170 (1995), 197-206, hep-th/9402145.
  3. Frenkel I.B., Jing N.H., Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. USA 85 (1988), 9373-9377.
  4. Jimbo M., Miki K., Miwa T., Nakayashiki A., Correlation functions of the XXZ model for D < -1, Phys. Let. A 168 (1992), 256-263, hep-th/9205055.
  5. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  6. Saveliev M.V., Zuevsky A.B., Quantum vertex operators for the sine-Gordon model, Internat. J. Modern Phys. A 15 (2000), 3877-3897.
  7. Zuevsky A., Heisenberg-type families of Uq(^G), in preparation.

Previous article   Next article   Contents of Volume 5 (2009)