
SIGMA 3 (2007), 117, 28 pages arXiv:0712.1107
https://doi.org/10.3842/SIGMA.2007.117
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics
SelfLocalized QuasiParticle Excitation in Quantum Electrodynamics and Its Physical Interpretation
Ilya D. Feranchuk and Sergey I. Feranchuk
Department of Physics, Belarusian University, 4 Nezavisimosti Ave., 220030, Minsk, Belarus
Received October 21, 2007, in final form November 29, 2007; Published online December 07, 2007
Abstract
The selflocalized quasiparticle excitation of the
electronpositron field (EPF) is found for the first time in
the framework of a standard form of the quantum electrodynamics.
This state is interpreted as the ''physical'' electron (positron)
and it allows one to solve the following problems: i) to express
the ''primary'' charge e_{0} and the mass m_{0} of the ''bare''
electron in terms of the observed values of e and m of the
''physical'' electron without any infinite parameters and by
essentially nonperturbative way; ii) to consider μmeson as
another selflocalized EPF state and to estimate the ratio
m_{μ}/m; iii) to prove that the selflocalized state is
Lorentzinvariant and its energy spectrum corresponds to the
relativistic free particle with the observed mass m; iv) to
show that the expansion in a power of the observed charge e <<
1 corresponds to the strong coupling expansion in a power of the
''primary'' charge e^{1}_{0} ~ e when the interaction between
the ``physical'' electron and the transverse electromagnetic
field is considered by means of the perturbation theory and all
terms of this series are free from the ultraviolet divergence.
Key words:
renormalization; Dirac electronpositron vacuum; nonperturbative theory.
pdf (404 kb)
ps (275 kb)
tex (97 kb)
References
 Weinberg S., Unified theories of elementary particle interactions, Scientific American 231 (1974), 5058.
 Akhiezer A.I., Beresteckii V.B., Quantum
electrodynamics, Nauka, Moscow, 1969.
Bogoliubov N.N., Shirkov D.V., Introduction to the theory of
quantum fields, Nauka, Moscow, 1973.
 Scharf G., Finite quantum electrodynamics:
the causal approach, John Wiley and Sons, Inc., USA, 2001.
Scharf G., Quantum gauge theories: a true ghost
story, Springer Verlag, Berlin  Heidelberg  New York, 1995.
 Dirac P.A.M., The principles of quantum mechanics,
The Clarendon Press, Oxford, 1958.
 Feynman R.P., Nobel lecture, Science
153 (1966), 699711.
 Lifshitz E.M., Pitaevskii L.P., Relativistic
quantum theory. Part II, Nauka, Moscow, 1971.
 Janke W., Pelster A., Schmidt H.J., Bachmann M. (Editors), Fluctuating paths and fields,
Proceedings dedicated to Hagen Kleinert, World Scientific,
Singapore, 2001.
 Dirac P.A.M., An extensible model of the electron, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 268 (1962), 5767.
 Klevansky S.P., The NambuJonaLasinio model of quantum chromodynamics,
Rev. Modern Phys. 64 (1992), 649671.
Gusynin V.P., Miransky V.A., Shovkovy I.A., Large N dynamics in QED in a magnetic field, Phys. Rev. D 67 (2003), 107703, 4 pages, hepph/0304059.
 Hong D.K., Rajeev S.G., Towards a bosonization of quantum electrodynamics,
Phys. Rev. Lett. 21 (1990), 24752479.
 Miransky V.A., Dynamics of spontaneous chiral symmetry breaking and continuous
limit in quantum electrodynamics, Nuovo Cimento A 90
(1985), 149160.
 Alexandrou C., Rosenfelder R., Schreiber A.W., Nonperturbative mass renormalization
in quenched QED from the worldline variational approach,
Phys. Rev. D 62 (2000), 085009, 10 pages.
 Pekar S.I., Autolocalization of the electron in the dielectric inertially polarized media, J. Exp. Theor. Phys. 16 (1946), 335340.
 Bogoliubov N.N., About one new form of the adiabatic perturbation theory in the problem
of interaction between particle and quantum field, Uspekhi Mat. Nauk 2 (1950), 324.
Tyablikov S.V., Adiabatic form of the perturbation theory in the
problem of interaction between paricle and quantum field,
J. Exp. Theor. Phys. 21 (1951), 377388.
 Dodd R.K., Eilbeck J.C., Gibbon J.D., Moris H.C.,
Solitons and nonlinear wave equations, Academic Press, London,
1984.
 Fröhlich H., Electrons in lattice fields, Adv. Phys.
3 (1954), 325361.
 Heitler W., The quantum theory of radiation,
The Clarendon Press, Oxford, 1954.
 Landau L.D., Lifshitz E.M., Quantum mechanics, Nauka, Moscow, 1963.
 Gross E.P., Strong coupling polaron theory and translational invariance, Ann. Physics,
99 (1976), 129.
 Bagan E., Lavelle M., McMullan D., Charges from dressed matter:
physics and renormalization, Ann. Physics, 282
(2000), 503540,
hepph/9909262.
 Yukalov V.I., Nonperturbative theory for anharmonic oscillator, Theoret. and Math. Phys.
28 (1976), 652660.
Caswell W.E., Accurate energy levels for the anharmonic oscillator and series for the doublewell potential in perturbation theory, Ann. Physics 123 (1979), 153182.
 Feranchuk I.D., Komarov L.I., The operator method of the approximate solution of the
Schrödinger equation, Phys. Lett. A 88 (1982),
211214.
 Feranchuk I.D., Komarov L.I., Nichipor I.V.,
Ulyanenkov A.P., Operator method in the problem of quantum anharmonic oscillator,
Ann. Physics 238 (1995), 370440.
 Feranchuk I.D., Komarov L.I.,
Ulyanenkov A.P., Twolevel system in a onemode quantum field: numerical solution on the basis
of the operator method, J. Phys. A: Math. Gen. 29 (1996), 40354047.
 Feranchuk I.D., Komarov L.I.,
Ulyanenkov A.P., A new method for calculation of crystal susceptibilities for xray diffraction
at arbitrary wavelength, Acta Crystallogr. Sect. A 58 (2002), 370384.
 Fradkin E.S., Renormalization in quantum electrodynamics with selfconsistent field,
Proc. Fiz. Inst.
of Soviet Academy of Science 29 (1965), 1154.
Fradkin E.S., Application of functional methods in quantum field theory and quantum statistics, Nuclear Phys. 76 (1966), 588612.
 Bogoliubov N.N., Quasimean values in the problems
of statistical mechanics. Selected Works, Vol. 3, Naukova Dumka,
Kiev, 1971.
 Komarov L.I., Krylov E.V., Feranchuk I.D., Numerical solution of the nonlinear eigenvalue
problem, Zh. Vychisl. Mat. Mat. Fiz. 18 (1978),
681691.
 Feranchuk I.D., Feranchuk S.I., Selfconsistent state in the strongcoupling QED,
hepth/0309072.
 Bawin M., Lavine J.D., On the existence of a critical charge for superheavy nucleus,
Nuovo Cimento 15 (1973), 3844.
 Feranchuk I.D., Finite electron charge and mass renormalization in quantum electrodynamics,
mathph/0605028.
 Shnir Ya.M., Monopol,
Springer, Berlin, 2005.
 Brodsky S.J., Drell S.D., Anomalous magnetic moment and limits on fermion substructure,
Phys. Rev. D 22 (1980), 22362242.
 Feynman R.P., Slow electrons in a polar crystal, Phys. Rev.
97 (1955), 660665.
 Landau L.D., Pekar S.I., Effective mass of the polaron, J. Exp. Theor. Phys.
18 (1948), 419423.
 Eides M.I., Grotch H., Shelyuto V.A., Theory of light hydrogenlike atoms,
Phys. Rep. 342 (2001), 63261,
hepph/0002158.
 Bjorken J.D., Drell S.D., Relativistic quantum mechanics, McGrawHill Book Company, London, 1976.

