Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 3 (2007), 107, 12 pages      arXiv:0708.0866
Contribution to the Proceedings of the 3-rd Microconference Analytic and Algebraic Methods III

Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian

Tamás Fülöp
Montavid Research Group, Budapest, Soroksári út 38-40, 1095, Hungary

Received August 07, 2007, in final form November 08, 2007; Published online November 16, 2007

For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and V(x) = g/x2 with the coefficient g in a certain range (x being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.

Key words: quantum mechanics; singular potential; self-adjointness; boundary condition.

pdf (282 kb)   ps (234 kb)   tex (128 kb)


  1. Gordeyev A.N., Chhajlany S.C., One-dimensional hydrogen atom: a singular potential in quantum mechanics, J. Phys. A: Math. Gen. 30 (1997), 6893-6909.
  2. Reed M., Simon B., Methods of modern mathematical physics I, functional analysis, revised and enlarged edition, Academic Press, New York, 1980.
  3. Reed M., Simon B., Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press, New York, 1975.
  4. Richtmyer R.D., Principles of advanced mathematical physics, Vol. I, Springer-Verlag, 1978.
  5. Akhiezer N.I., Glazman I.M., Theory of linear operators in Hilbert space, Pitman, New York, 1981.
  6. Gorbachuk V.I., Gorbachuk M.L., Boundary value problems for operator differential equations, Kluwer, 1991.
  7. Matolcsi T., Spacetime without reference frames, Akadémiai Kiadó, Budapest, 1993.
  8. Fülöp T., The physical role of boundary conditions in quantum mechanics, PhD dissertation, The University of Tokyo, Japan, 2006.
  9. Fülöp T., Cheon T., Tsutsui I., Classical aspects of quantum walls in one dimension, Phys. Rev. A 66 (2002), 052102-052111, quant-ph/0111057.
  10. Tsutsui I., Fülöp T., Cheon T., Duality and anholonomy in the quantum mechanics of 1D contact interactions, J. Phys. Soc. Japan 69 (2000), 3473-3476, quant-ph/0003069.
  11. Cheon T., Fülöp T., Tsutsui I., Symmetry, duality and anholonomy of point interactions in one dimension, Ann. Phys. (N.Y.) 294 (2001), 1-23, quant-ph/0008123.
  12. Tsutsui I., Fülöp T., Cheon T., Möbius structure of the spectral space of Schrödinger operators with point interaction, J. Math. Phys. 42 (2001), 5687-5697, quant-ph/0105066.
  13. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., with a remarkable Appendix written by P. Exner, AMS Chelsea Publishing, Providence, Rhode Island, 2005.
  14. Dittrich J., Exner P., Tunneling through a singular potential barrier, J. Math. Phys. 26 (1985), 2000-2008.
  15. Fehér L., Fülöp T., Tsutsui I., Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables, Nuclear Phys. B 715 (2005), 713-757, math-ph/0412095.
  16. Cheon T., Tsutsui I., Fülöp T., Quantum abacus, Phys. Lett. A 330 (2004), 338-342, quant-ph/0404039.
  17. Gitman D., Tyutin I., Voronov B., Self-adjoint extensions as a quantization problem, Progr. Math. Phys., Birkhäuser, Basel, 2006.
  18. Frank W.M., Land D.J., Spector R.M., Singular potentials, Rev. Modern Phys. 43 (1971), 36-98.
  19. Krall A.M., Boundary values for an eigenvalue problem with a singular potential, J. Differential Equations 45 (1982), 128-138.
  20. Esteve J.G., Origin of the anomalies: The modified Heisenberg equation, Phys. Rev. D 66 (2002), 125013, 4 pages, hep-th/0207164.
  21. Coon S.A., Holstein B.R., Anomalies in quantum mechanics: the 1/r2 potential, Amer. J. Phys. 70 (2002), 513-519, quant-ph/0202091.
  22. Essim A.M., Griffiths D.J., Quantum mechanics of the 1/x2 potential, Amer. J. Phys. 74 (2006), 109-117.

Previous article   Next article   Contents of Volume 3 (2007)