Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 3 (2007), 049, 28 pages      math.DG/0703189      http://dx.doi.org/10.3842/SIGMA.2007.049
Contribution to the Proceedings of the Coimbra Workshop on Geometric Aspects of Integrable Systems

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group

David Iglesias a, Juan Carlos Marrero b, David Martín de Diego a, Eduardo Martínez c and Edith Padrón b
a) Departamento de Matemáticas, Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
b) Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain
c) Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Received November 14, 2006, in final form March 06, 2007; Published online March 16, 2007

Abstract
We describe the reduction procedure for a symplectic Lie algebroid by a Lie subalgebroid and a symmetry Lie group. Moreover, given an invariant Hamiltonian function we obtain the corresponding reduced Hamiltonian dynamics. Several examples illustrate the generality of the theory.

Key words: Lie algebroids and subalgebroids; symplectic Lie algebroids; Hamiltonian dynamics; reduction procedure.

pdf (367 kb)   ps (248 kb)   tex (28 kb)

References

  1. Bursztyn H., Cavalcanti G.R., Gualtieri M., Reduction of Courant algebroids and generalized complex structures, Adv. Math., to appear, math.DG/0509640.
  2. Cannas A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes Series, American Math. Soc., 1999.
  3. Cariñena J.F., Nunes da Costa J.M., Santos P., Reduction of Lie algebroid structures, Int. J. Geom. Methods Mod. Phys. 2 (2005), 965-991.
  4. Cushman R., Bates L., Global aspects of classical integrable systems, Birkhäuser Verlag, Basel, 1997.
  5. Dardié J.M., Medina A., Double extension symplectique d'un groupe de Lie symplectique, Adv. Math. 117 (1996), 208-227.
  6. Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179, math.DG/0007132.
  7. Gotay M.J., Tuynman G.M., R2n is a universal symplectic manifold for reduction, Lett. Math. Phys. 18 (1989), 55-59.
  8. Grabowska K., Urbanski P., Grabowski J., Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys. 3 (2006), 559-576, math-ph/0509063.
  9. Higgins P.J., Mackenzie K.C.H., Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194-230.
  10. Iglesias D., Marrero J.C., Martín de Diego D., Martínez E., Padrón E., Marsden-Weinstein reduction for symplectic Lie algebroids, in progress.
  11. de León M., Marrero J.C., Martínez E., Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen. 38 (2005), R241-R308, math.DG/0407528.
  12. Liu Z-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), 547-574, dg-ga/9508013.
  13. Mackenzie K., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, 2005.
  14. Mackenzie K., Xu P., Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452.
  15. Lewis D., Ratiu T., Simo J.C., Marsden J.E., The heavy top: a geometric treatment, Nonlinearity 5 (1992), 1-48.
  16. Marsden J.E., Misiolek G., Ortega J.-P., Perlmutter M., Ratiu T., Hamiltonian reduction by stages, Preprint, 2007.
  17. Marsden J.E., Ratiu T., Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
  18. Marsden J.E., Weinstein A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
  19. Martínez E., Lagrangian mechanics on Lie algebroids, Acta Appl. Math. 67 (2001), 295-320.
  20. Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, Vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004.
  21. Weinstein A., Lagrangian mechanics and groupoids, Fields Inst. Commun. 7 (1996), 207-231.

Previous article   Next article   Contents of Volume 3 (2007)