Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 097, 15 pages      nlin.SI/0701004      http://dx.doi.org/10.3842/SIGMA.2006.097
Contribution to the Vadim Kuznetsov Memorial Issue

On the Darboux-Nijenhuis Variables for the Open Toda Lattice

Yuriy A. Grigoryev and Andrey V. Tsiganov
St.Petersburg State University, St.Petersburg, Russia

Received November 17, 2006; Published online December 30, 2006

Abstract
We discuss two known constructions proposed by Moser and by Sklyanin of the Darboux-Nijenhuis coordinates for the open Toda lattice.

Key words: bi-Hamiltonian systems; Toda lattice.

pdf (259 kb)   ps (183 kb)   tex (16 kb)

References

  1. Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton Univ. Press, 1988.
  2. Das A., Okubo S., A systematic study of the Toda lattice, Ann. Phys., 1989, V.30, 215-232.
  3. Falqui G., Magri F., Pedroni M., Bihamiltonian geometry and separation of variables for Toda lattices, J. Nonlinear Math. Phys., 2001, V.8, 118-127, nlin.SI/0002008.
  4. Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom., 2003, V.6, 139-179, nlin.SI/0204029.
  5. Faybusovich L., Gekhtman M., Poisson brackets on rational functions and multi Hamiltonian structures for integrable lattices, Phys. Lett. A, 2000, V.272, 236-244, nlin.SI/0006045.
  6. Fernandes R.L., On the master symmetries and bi-Hamiltonian structure of the Toda lattice, J. Phys. A: Math. Gen., 1993, V.26, 3797-3803.
  7. Flaschka H., McLaughlin D.W., Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys., 1976, V.55, 438-456.
  8. Fokas A., Fuchssteiner B., Symplectic structures, Bäcklund transformations and hereditary symmetries, Phys. D, 1981, V.4, 47-66.
  9. Frölicher A., Nijenhuis A., Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms, Nederl. Akad. Wetensch. Proc. Ser. A, 1956, V.59, 338-359.
  10. Gelfand I.M., Dorfman I.Ya., Hamiltonian operators and algebraic structures associated with them, Funktsional. Anal. i Prilozhen., 1979, V.13, N 4, 13-30.
  11. Gelfand I.M., Zakharevich I., On the local geometry of a bi-Hamiltonian structure, in The Gelfand Mathematical Seminars 1990-1992, Editors L. Corwin et al., Boston, Birkhauser, 1993, 51-112.
  12. Krein M.G., Naimark M.A., The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra, 1981, V.10, N 4, 265-308 (translated from the Russian by O. Boshko and J.L. Howland).
  13. Kosmann-Schwarzbach Y., Magri F., Poisson-Nijenhuis structures, Ann. Inst. Poincaré (Phys. Theor.), 1990, V.53, 35-81.
  14. Komarov I.V., Tsiganov A.V., Two particle quantum periodic Toda lattice, Vestnik Leningrad Univ., 1988, V.2, 69-71.
  15. Levi-Civita T., Integrazione delle equazione di Hamilton-Jacobi per separazione di variabili, Math. Ann., 1904, V.24, 383-397.
  16. Magri F., Geometry and soliton equations, in La Mécanique Analytique de Lagrange et son héritage, Atti Acc. Sci. Torino Suppl., 1990, V.24, 181-209.
  17. Magri F., Eight lectures on integrable systems, in Integrability of Nonlinear Systems (1996, Pondicherry), Lecture Notes in Phys., Vol. 495, Berlin, Springer, 1997, 256-296.
  18. Moser J., Finitely many mass points on the line under the influence of an exponential potential - an integrable system, in Dynamical Systems, Theory and Applications (1974, Rencontres, BattelleRes. Inst., Seattle, Wash.), Lecture Notes in Phys., Vol. 38, Berlin, Springer, 1975, 467-497.
  19. Sklyanin E.K., The quantum Toda chain, in Nonlinear Equations in Classical and Quantum Field Theory (1983/1984, Meudon/Paris), Lecture Notes in Phys., Vol. 226, Berlin, Springer, 1985, 196-293.
  20. Sklyanin E.K., Separation of variables - new trends, in Quantum Field Theory, Integrable Models and Beyond (1994, Kyoto), Progr. Theoret. Phys. Suppl., 1995, V.118, 35-60, solv-int/9504001.
  21. Smirnov F.A., Structure of matrix elements in quantum Toda chain, J. Phys. A: Math. Gen., 1998, V.31, 8953-8971, math-ph/9805011.
  22. Stieltjes T., Recherches sur les fractions continues, Ann. de Toulouse, VIII-IX, 1894-1895.
  23. Tsiganov A.V., On the invariant separated variables, Regul. Chaotic Dyn., 2001, V.6, 307-326.
  24. Tsiganov A.V., On the Darboux-Nijenhuis coordinates for the generalizaed open Toda lattices, Theoret. and Math. Phys., submitted.
  25. Vaninsky K.L., The Atiyah-Hitchin bracket and the open Toda Lattice, J. Geom. Phys., 2003, V.46, 283-307, math-ph/0202047.

Previous article   Next article   Contents of Volume 2 (2006)