Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 092, 29 pages      math.QA/0606121      http://dx.doi.org/10.3842/SIGMA.2006.092
Contribution to the Vadim Kuznetsov Memorial Issue

A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra

Mark J. Hopkins and Alexander I. Molev
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received October 14, 2006; Published online December 26, 2006

Abstract
We prove an analogue of the Sylvester theorem for the generator matrices of the quantum affine algebra Uq(gln). We then use it to give an explicit realization of the skew representations of the quantum affine algebra. This allows one to identify them in a simple way by calculating their highest weight, Drinfeld polynomials and the Gelfand-Tsetlin character (or q-character). We also apply the quantum Sylvester theorem to construct a q-analogue of the Olshanski algebra as a projective limit of certain centralizers in Uq(gln) and show that this limit algebra contains the q-Yangian as a subalgebra.

Key words: quantum affine algebra; quantum Sylvester theorem; skew representations.

pdf (392 kb)   ps (258 kb)   tex (29 kb)

References

  1. Bazhanov V.V., Reshetikhin N., Restricted solid-on-solid models connected with simply laced algebras and conformal field theory, J. Phys. A: Math. Gen., 1990, V.23, 1477-1492.
  2. Brundan J., Kleshchev A., Parabolic presentations of the Yangian Y(gln), Comm. Math. Phys., 2005, V.254, 191-220, math.QA/0407011.
  3. Brundan J., Kleshchev A., Representations of shifted Yangians and finite W-algebras, math.RT/0508003.
  4. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, 1994.
  5. Cherednik I.V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 1987, V.54, 563-577.
  6. Ding J., Frenkel I., Isomorphism of two realizations of quantum affine algebra U(gl(n)), Comm. Math. Phys., 1993, V.156, 277-300.
  7. Drinfeld V.G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 1985, V.32, 254-258.
  8. Frenkel E., Mukhin E., The Hopf algebra Rep Uq gl, Selecta Math., 2002, V.8, 537-635, math.QA/0103126.
  9. Frenkel E., Reshetikhin N., The q-characters of representations of quantum affine algebras and deformations of W-algebras, Contemp. Math., 1999, V.248, 163-205, math.QA/9810055.
  10. Gelfand I.M., Retakh V.S., Determinants of matrices over noncommutative rings, Funct. Anal. Appl., 1991, V.25, 91-102.
  11. Jimbo M., A q-analogue of Uq(gl(N+1)), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys., 1986, V.11, 247-252.
  12. Jimbo M., Quantum R-matrix for the generalized Toda system, Comm. Math. Phys., 1986, V.102, 537-547.
  13. Klimyk A., Schmüdgen K., Quantum groups and their representations, Berlin, Springer, 1997.
  14. Knight H., Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra, 1995, V.174, 187-196.
  15. Krob D., Leclerc B., Minor identities for quasi-determinants and quantum determinants, Comm. Math. Phys., 1995, V.169, 1-23, hep-th/9411194.
  16. Kuznetsov V.B., Koornwinder T.H., Gauss hypergeometric function and quadratic R-matrix algebras, St. Petersburg Math. J., 1995, V.6, 595-618, hep-th/9311152.
  17. Kuznetsov V.B., 3F2(1) hypergeometric function and quadratic R-matrix algebra, in Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes, Vol. 9, Providence, RI, Amer. Math. Soc., 1996, 185-197, math.QA/9411225.
  18. Macdonald I.G., Symmetric functions and Hall polynomials, Oxford, Oxford University Press, 1995.
  19. Molev A.I., Yangians and transvector algebras, Discrete Math., 2002, V.246, 231-253, math.QA/9811115.
  20. Molev A., Nazarov M., Olshanski G., Yangians and classical Lie algebras, Russian Math. Surveys, 1996, V.51. N 2, 205-282, hep-th/9409025.
  21. Molev A., Olshanski G., Centralizer construction for twisted Yangians, Selecta Math., 2000, V.6, 269-317, q-alg/9712050.
  22. Molev A., Ragoucy E., Sorba P., Coideal subalgebras in quantum affine algebras, Rev. Math. Phys., 2003, V.15, 789-822, math.QA/0208140.
  23. Nakai W., Nakanishi T., Paths, tableaux and q-characters of quantum affine algebras: the Cn case, math.QA/0502041.
  24. Nazarov M., Yangian of the queer Lie superalgebra, Comm. Math. Phys., 1999, V.208, 195-223, math.QA/9902146.
  25. Nazarov M., Tarasov V., Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math. Sci. Kyoto Univ., 1994, V.30, 459-478, hep-th/9302102.
  26. Nazarov M., Tarasov V., Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math., 1998, V.496, 181-212, q-alg/9502008.
  27. Olshanski G.I., Extension of the algebra U(g) for infinite-dimensional classical Lie algebras g, and the Yangians Y(gl(m)), Soviet Math. Dokl., 1988, V.36, 569-573.
  28. Olshanski G.I., Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, in Topics in Representation Theory, Editor A.A. Kirillov, Advances in Soviet Math., Vol. 2, Providence, RI, Amer. Math. Soc., 1991, 1-66.
  29. Olshanski G.I., Twisted Yangians and infinite-dimensional classical Lie algebras, in Quantum Groups, Editor P.P. Kulish, Lecture Notes in Math., Vol. 1510, Berlin-Heidelberg, Springer, 1992, 103-120.
  30. Reshetikhin N.Yu., Takhtajan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1990, V.1, 193-225.

Previous article   Next article   Contents of Volume 2 (2006)