Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 2 (2006), 079, 4 pages      math-ph/0609081
Contribution to the Proceedings of the O'Raifeartaigh Symposium

u-Deformed WZW Model and Its Gauging

Ctirad Klimčík
Institute de mathématiques de Luminy, 163, Avenue de Luminy, 13288 Marseille, France

Received September 28, 2006; Published online November 13, 2006

We review the description of a particular deformation of the WZW model. The resulting theory exhibits a Poisson-Lie symmetry with a non-Abelian cosymmetry group and can be vectorially gauged.

Key words: gauged WZW model; Poisson-Lie symmetry.

pdf (167 kb)   ps (134 kb)   tex (8 kb)


  1. Balog J., Fehér L., Palla L., Chiral extensions of the WZNW phase space, Poisson-Lie symmetries and groupoids, Nucl. Phys. B, 2000, V.568, 503-542, hep-th/9910046.
  2. Klimčík C., Quasitriangular WZW model, Rev. Math. Phys., 2004, V.16, 679-808, hep-th/0103118.
  3. Klimčík C., Poisson-Lie symmetry and q-WZW model, in Proceedings of the 4th International Symposium "Quantum Theory and Symmetries" (August 15-21, 2005, Varna), Sofia, Heron Press, 2006, V.1, 382-393, hep-th/0511003.
  4. Klimčík C., On moment maps associated to a twisted Heisenberg double, Rev. Math. Phys., 2006, V.18, 781-821, math-ph/0602048.
  5. Semenov-Tian-Shansky M., Poisson Lie groups, quantum duality principle and the twisted quantum double, Theor. Math. Phys., 1992, V.93, 1292-1307, hep-th/9304042.
  6. Witten E., Non-Abelian bosonisation in two dimensions, Comm. Math. Phys., 1984, V.92, 455-472.

Previous article   Next article   Contents of Volume 2 (2006)