Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 070, 12 pages      hep-th/0610182      http://dx.doi.org/10.3842/SIGMA.2006.070
Contribution to the Proceedings of the O'Raifeartaigh Symposium

On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa-Holm Equation

Henrik Aratyn a, Jose Francisco Gomes b and Abraham H. Zimerman b
a) Department of Physics, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607-7059
b) Instituto de Física Teórica-UNESP, Rua Pamplona 145, 01405-900 São Paulo, Brazil

Received September 13, 2006, in final form October 05, 2006; Published online October 17, 2006

Abstract
Different gauge copies of the Ablowitz-Kaup-Newell-Segur (AKNS) model labeled by an angle θ are constructed and then reduced to the two-component Camassa-Holm model. Only three different independent classes of reductions are encountered corresponding to the angle θ being 0, π/2 or taking any value in the interval 0 < θ < π/2. This construction induces Bäcklund transformations between solutions of the two-component Camassa-Holm model associated with different classes of reduction.

Key words: integrable hierarchies; Camassa-Holm equation; Bäcklund transformation.

pdf (223 kb)   ps (152 kb)   tex (15 kb)

References

  1. Aratyn H., Gomes J.F., Zimerman A.H., Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion, J. Geom. Phys., 2003, V.46, 21-47, Erratum, J. Geom. Phys., 2003, V.46, 201-201, hep-th/0107056.
  2. Chodos A., Simple connection between conservation laws in the Korteweg-de Vries and sine-Gordon systems, Phys. Rev. D, 1980, V.21, 2818-2822.
  3. Olive D., Turok N., Local conserved densities and zero curvature conditions for Toda lattice field theories, Nuclear Phys., 1985, V.257, 277-301.
  4. Eguchi T., Yang S.K., Deformations of conformal field theories and soliton equations, Phys. Lett. B, 1989, V.224, 373-377.
  5. Tracy C.A., Widow H., Fredholm determinants and the mKdV/sinh-Gordon hierarchies, Comm. Math. Phys., 1996, V.179, 1-9, solv-int/9506006.
  6. Haak G., Negative flows of the potential KP-hierarchy, Trans. Amer. Math. Soc., 1996, V.348, 375-390.
  7. Dorfmeister J., Gradl H., Szmigielski J., Systems of PDEs obtained from factorization in loop groups, Acta Appl. Math., 1998, V.53, 1-58, solv-int/9801009.
  8. Aratyn H., Ferreira L.A., Gomes J.F., Zimerman A.H., The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy, J. Phys. A: Math. Gen., 2000, V.33, L331-L337, nlin.SI/0007002.
  9. Camassa R., Holm D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, V.71, 1661-1664, patt-sol/9305002.
  10. Fokas A., Fuchssteiner B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 1981, V.4, 47-66.
  11. Chen M., Liu S.Q., Zhang Y., A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 2006, V.75, 1-15, nlin.SI/0501028.
  12. Liu S.Q., Zhang Y., Deformations of semisimple bihamiltonian structures of hydrodynamic type, J. Geom. Phys., 2005, V.54, 427-453, math.DG/0405146.
  13. Falqui G., On a Camassa-Holm type equation with two dependent variables, J. Phys. A: Math. Gen., 2006, V.39, 327-342, nlin.SI/0505059.
  14. Shabat A.B., Martinez Alonso L., On the prolongation of a hierarchy of hydrodynamic chains, in New Trends in Integrability and Partial Solvability, Editors A.B. Shabat et al., Proceedings of the NATO Advanced Research Workshop (2002, Cadiz, Spain), NATO Sci. Ser. II Math. Phys. Chem., Vol. 132, Dordrecht, Kluwer Academic Publishers, 2004, 263-280.
  15. Adler V.E., Shabat A.B., Dressing chain for the acoustic spectral problem, nlin.SI/0604008.
  16. Ivanov R.I., Extended Camassa-Holm hierarchy and conserved quantities, Zeitschrift fur Naturforschung A, 2006, V.61, 133-138, nlin.SI/0601066.
  17. Martinez Alonso L., Shabat A.B., Hydrodynamic reductions and solutions of a universal hierarchy, Theoret. and Math. Phys., 2004, V.140, 1073-1085, nlin.SI/0312043.
  18. Shabat A.B., Universal solitonic hierarchy, J. Nonlinear Math. Phys., 2005, V.12, suppl. 1, 614-624.
  19. Aratyn H., Gomes J.F., Zimerman A.H., On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamic type, J. Phys. A: Math. Gen., 2006, V.39, 1099-1114, nlin.SI/0507062.
  20. Wu Ch.-Zh., On solutions of two-component Camassa-Holm system, J. Math. Phys., 2006, V.47, 083513, 11 pages.
  21. Aratyn H., van de Leur J., Clifford algebra derivations of tau functions for two-dimensional integrable models with positive and negative flows, nlin.SI/0605027.

Previous article   Next article   Contents of Volume 2 (2006)