Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 2 (2006), 054, 9 pages      nlin.SI/0605041

Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation

Partha Guha a and Peter J. Olver b
a) S.N. Bose National Centre for Basic Sciences, JD Block, Sector-3, Salt Lake, Calcutta-700098, India
b) School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received March 08, 2006, in final form May 08, 2006; Published online May 23, 2006

We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.

Key words: geodesic flow; diffeomorphism; Virasoro orbit; Sobolev norm.

pdf (188 kb)   ps (152 kb)   tex (12 kb)


  1. Arbarello E., De Concini C., Kac V.G., Procesi C., Moduli space of curves and representation theory, Comm. Math. Phys., 1988, V.117, 1-36.
  2. Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, V.71, 1661-1664, patt-sol/9305002.
  3. Camassa R., Holm D.D., Hyman J.M., A new integrable shallow water equation, Adv. in Appl. Mech., 1994, V.31, 1-33.
  4. Chen M., Liu S.-Q., Zhang Y., A 2-component generalization of the Camassa-Holm equation and its solutions, nlin.SI/0501028.
  5. Devchand C., Schiff J., The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group, J. Math. Phys., 2001, V.42, 260-273, solv-int/9811016.
  6. Ebin D., Marsden J., Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 1970, V.92, 102-163.
  7. Falqui G., On a Camassa-Holm type equation with two dependent variables, nlin.SI/0505059.
  8. Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D, 1996, V.95, 229-243.
  9. Gelfand I.M., Graev I.M., Vershik A.M., Models of representations of current groups, in Representations of Lie Groups and Lie Algebras, Budapest, Akad. Kiad, 1985, 121-179.
  10. Guha P., Integrable geodesic flows on the (super)extension of the Bott-Virasoro group, Lett. Math. Phys., 2000, V.52, 311-328.
  11. Guha P., Geodesic flows, bi-Hamiltonian structure and coupled KdV type systems, J. Math. Anal. Appl., 2005, V.310, 45-56.
  12. Guha P., Euler-Poincaré formalism of coupled KdV type systems and diffeomorphism group on S1, J. Appl. Anal., 2005, V.11, 261-282.
  13. Holm D.D., Marsden J.E., Ratiu T.S., The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 1998, V.137, 1-81, chao-dyn/9801015.
  14. Ito M., Symmetries and conservation laws of a coupled nonlinear wave equation, Phys. Lett. A, 1982, V.91, 335-338.
  15. Li Y.A., Olver P.J., Rosenau P., Non-analytic solutions of nonlinear wave models, in Nonlinear Theory of Generalized Functions, Editors M. Grosser, G. Hörmann, M. Kunzinger and M. Oberguggenberger, Research Notes in Mathematics, Vol. 401, New York, Chapman and Hall/CRC, 1999, 129-145.
  16. Liu S.-Q., Zhang Y., Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 2005, V.54, 427-453, math.DG/0405146.
  17. Manin Yu.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Comm. Math. Phys., 1985, V.98, 65-77.
  18. Marcel P., Ovsienko V., Roger C., Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouville operators, Lett. Math. Phys., 1997, V.40, 31-39, hep-th/9602170.
  19. Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys., 1988, V.29, 2499-2506.
  20. Misiolek G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 1998, V.24, 203-208.
  21. Olver P.J., Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, Vol. 107, New York, Springer-Verlag, 1993.
  22. Olver P.J., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 1996, V.53, 1900-1906.
  23. Ovsienko V.Yu., Khesin B.A., KdV super equation as an Euler equation, Funct. Anal. Appl., 1987, V.21, 329-331.
  24. Ovsienko V.Yu., Coadjoint representation of Virasoro-type Lie algebras and differential operators on tensor-densities, in Infinite Dimensional Kähler Manifolds (1995, Oberwolfach), DMV Sem., Vol. 31, Basel, Birkhäuser, 2001, 231-255.
  25. Popowicz Z., A 2-component or N=2 supersymmetric Camassa-Holm equation, nlin.SI/0509050.
  26. Rosenau P., Nonlinear dispersion and compact structures, Phys. Rev. Lett., 1994, V.73, 1737-1741.

Previous article   Next article   Contents of Volume 2 (2006)