Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 2 (2006), 020, 34 pages      hep-th/0602145      http://dx.doi.org/10.3842/SIGMA.2006.020

Duality-Symmetric Approach to General Relativity and Supergravity

Alexei J. Nurmagambetov
A.I. Akhiezer Institute for Theoretical Physics, NSC "Kharkov Institute of Physics and Technology", 1 Akademicheskaya Str., Kharkiv, 61108 Ukraine

Received October 19, 2005, in final form February 03, 2006; Published online February 15, 2006; Some references added and typos corrected March 10, 2006

Abstract
We review the application of a duality-symmetric approach to gravity and supergravity with emphasizing benefits and disadvantages of the formulation. Contents of these notes includes: 1) Introduction with putting the accent on the role of dual gravity within M-theory; 2) Dualization of gravity with a cosmological constant in D = 3; 3) On-shell description of dual gravity in D > 3; 4) Construction of the duality-symmetric action for General Relativity with/without matter fields; 5) On-shell description of dual gravity in linearized approximation; 6) Brief summary of the paper.

Key words: duality; gravity; supergravity.

pdf (464 kb)   ps (333 kb)   tex (134 kb)

References

  1. Aganagic M., Park J., Popescu C., Schwarz J.H., World-volume action of the M theory five-brane, Nucl. Phys. B, 1997, V.496, 191-214, hep-th/9701166.
  2. Ajith K.M., Harikumar E., Sivakumar M., Dual linearized gravity in arbitrary dimensions, Class. Quant. Grav., 2005, V.22, 5385-5396, hep-th/0411202.
  3. Arcos H.I., Pereira J.G., Torsion gravity: a reappraisal, Internat. J. Modern Phys. D, 2004, V.13, 2193-2240, gr-qc/0501017.
  4. Arnowitt R., Deser S., Misner C.W., The dynamics of General Relativity, in Gravitation: an Introduction to Current Research, Editor L. Witten, New York, Wiley, 1962, 227-264, gr-qc/0405109.
  5. Bandos I., Berkovits N., Sorokin D., Duality-symmetric eleven-dimensional supergravity and its coupling to M-branes, Nucl. Phys. B, 1998, V.522, 214-233, hep-th/9711055.
  6. Bandos I., Lechner K., Nurmagambetov A., Pasti P., Sorokin D., Tonin M., Covariant action for super-five-brane of M theory, Phys. Rev. Lett., 1997, V.78, 4332-4335, hep-th/9701149.
  7. Bandos I.A., Nurmagambetov A.J., Sorokin D.P., Various faces of type IIA supergravity, Nucl. Phys. B, 2004, V.676, 189-228, hep-th/0307153.
  8. Banks T., Landskepticism: or why effective potentials don't count string models, hep-th/0412129.
  9. Bautier K., Deser S., Henneaux M., Seminara D., No cosmological D=11 supergravity, Phys. Lett. B, 1997, V.406, 49-53, hep-th/9704131.
  10. Bekaert X., Boulanger N., Massless spin-two field S-duality, Class. Quant. Grav., 2003, V.20, S417-S424, hep-th/0212131.
  11. Bekaert X., Boulanger N., Henneaux M., Consistent deformations of dual formulations of linearized gravity: a no-go result, Phys. Rev. D, 2003, V.67, 044010, 8 pages, hep-th/0210278.
  12. Bengtsson I., Kleppe A., On chiral p-forms, Int. J. Mod. Phys. A, 1997, V.12, 3397-3412, hep-th/9609102.
  13. Bergshoeff E., Kallosh R., Ortin T., Roest D., Van Proeyen A., New formulation of D=10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav., 2001, V.18, 3359-3382, hep-th/0103233.
  14. Berkovits N., Local actions with electric and magnetic sources, Phys. Lett. B, 1997, V.395, 28-35, hep-th/9610134.
  15. Blau M., Killing vectors, constraints and conserved charges in Kaluza-Klein theories, Class. Quant. Grav., 1987, V.4, 1207-1221.
  16. Borisov A., Ogievetsky V., Theory of dynamical affine and conformal symmetries as gravity theory, Teoret. Mat. Fiz., 1974, V.21, 329-342 (in Russian).
  17. Boulanger N., Cnockaert S., Henneaux M., A note on spin-s duality, JHEP, 2003, V.0306, 060, 18 pages, hep-th/0306023.
  18. Brown J., Ganguli S., Ganor O.J., Helfgott C., E10 orbifolds, JHEP, 2005, V.0506, 057, 60 pages, hep-th/0409037.
  19. Brown J., Ganor O.J., Helfgott C., M-theory and E10: billiards, branes, and imaginary roots, JHEP, 2004, V.0408, 063, 68 pages, hep-th/0401053.
  20. Chan H.-M., Faridani J., Tsou S.T., Generalized dual symmetry for non-Abelian Yang-Mills fields, Phys. Rev. D, 1996, V.53, 7293-7305, hep-th/9512173.
  21. Chaudhuri S., Hidden symmetry unmasked: matrix theory and E(11), hep-th/0404235.
  22. Christensen S.M., Duff M.J., Quantizing gravity with a cosmological constant, Nucl. Phys. B, 1980, V.170, 480-506.
  23. Cremmer E., Julia B., The SO(8) supergravity, Nucl. Phys. B, 1979, V.159, 141-212.
  24. Cremmer E., Julia B., Lü H., Pope C.N., Dualisation of dualities I, Nucl. Phys. B, 1998, V. 523, 73-144, hep-th/9710119.
  25. Cremmer E., Julia B., Lü H., Pope C.N., Dualisation of dualities II: Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B, 1998, V. 535, 242-292, hep-th/9806106.
  26. Cremmer E., Julia B., Scherk J., Supergravity theory in 11 dimensions, Phys. Lett. B, 1978, V.76, 409-412.
  27. Damour T., Cosmological singularities, billiards and Lorentzian Kac-Moody algebras, gr-qc/0412105.
  28. Damour T., Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras, gr-qc/0501064.
  29. Damour T., Henneaux M., Nicolai H., E10 and a "small tension expansion" of M theory, Phys. Rev. Lett., 2002, V.89, 221601, 4 pages, hep-th/0207267.
  30. Damour T., Nicolai H., Higher order M theory corrections and the Kac-Moody algebra E10, Class. Quant. Grav., 2005, V.22, 2849-2880, hep-th/0504153.
  31. de Andrade V.C., Barbosa A.L., Pereira J.G., Gravitation and duality symmetry, gr-qc/0501037.
  32. Deser S., Drechsler W., Generalized gauge field copies, Phys. Lett. B, 1979, V.86, 189-192.
  33. Deser S., Gibbons G.W., Born-Infeld-Einstein actions?, Class. Quant. Grav., 1998, V.15, L35-L39, hep-th/9803049.
  34. Deser S., Jackiw R., t'Hooft G., Three-dimensional Einsten gravity: dynamics of flat space, Ann. Phys., 1984, V.152, 220-235.
  35. Deser S., Jackiw R., Three-dimensional cosmological gravity: dynamics of constant curvature, Ann. Phys., 1984, V.153, 405-416.
  36. Deser S., Jackiw R., Topologically massive gauge theories, Ann. Phys., 1982, V.140, 372-411.
  37. Deser S., Nepomechie R.I., Electric-magnetic duality of conformal gravitation, Phys. Lett. A, 1983, V.97, 329-332.
  38. Deser S., Seminara D., Free spin 2 duality invariance cannot be extended to general relativity, Phys. Rev. D, 2005, V.71, 081502, 7 pages, hep-th/0503030.
  39. Deser S., Teitelboim C., Duality transformations of Abelian and non-Abelian gauge fields, Phys. Rev. D, 1976, V.13, 1592-1597.
  40. Deser S., Wilczek F., Non-uniqueness of gauge-field potentials, Phys. Lett. B, 1976, V.65, 391-393.
  41. de Wit B., Nicolai H., Hidden symmetries, central charges and all that, Class. Quant. Grav., 2001, V.18, 3095-3112, hep-th/0011239.
  42. de Wit B., Nicolai H., Hidden symmetries in D=11 supergravity, Phys. Lett. B, 1985, V.155, 47-53.
  43. de Wit B., Nicolai H., D=11 supergravity with local SU(8) invariance, Nucl. Phys. B, 1986, V.274, 363-400.
  44. Douglas M.R., Basic results in vacuum statictics, Comptes Rendus Physique, 2004, V.5, 965-977, hep-th/0409207.
  45. Fradkin E.S., Gitman D.M., Shvartsman S.M., Quantum electrodynamics with unstable vacuum, Berlin, Springer, 1991.
  46. Fradkin E.S., Tseytlin A.A., Quantum equivalence of dual field theories, Ann. Phys., 1985, V.162, 31-48.
  47. Francia D., Hull C.M., Higher-spin gauge fields and duality, hep-th/0501236.
  48. Fubini S., Veneziano G., Algebraic treatment of subsidiary conditions in dual resonance model, Ann. Phys., 1971, V.63, 12-27.
  49. Gaberdiel M.R., Olive D.I., West P.C., A class of Lorentzian Kac-Moody algebras, Nucl. Phys. B, 2002, V.645, 403-437, hep-th/0205068.
  50. Garcia-Compean H., Obregon O., Plebansky J.F., Ramirez C., Towards a gravitational analogue to S-duality in non-Abelian gauge theories, Phys. Rev. D, 1998, V.57, 7501-7506, hep-th/9711115.
  51. Garcia-Compean H., Obregon O., Ramirez C., Gravitational duality in MacDowell-Mansouri gauge theory, Phys. Rev. D, 1998, V.58, 104012, 3 pages, hep-th/9802063.
  52. Green M.B., Schwarz J.H., Witten E., Superstring theory, Cambridge, Cambridge University Press, 1987.
  53. Gross D.J., High-energy symmetries of string theory, Phys. Rev. Lett., 1988, V.60, 1229-1232.
  54. Henneaux M., Teitelboim C., Duality in linearized gravity, Phys. Rev. D, 2005, V.71, 024018, 8 pages, gr-qc/0408101.
  55. Henry-Labordere P., Julia B., Paulot L., Borcherds symmetries in M-theory, JHEP, 2002, V.0204, 049, 31 pages, hep-th/0212346.
  56. Henry-Labordere P., Julia B., Paulot L., Real Borcherds superalgebras and M-theory, JHEP, 2003, V.0304, 060, 21 pages, hep-th/0203070.
  57. Hull C.M., Gravitational duality, branes and charges, Nucl. Phys. B, 1998, V.509, 216-251, hep-th/9705162.
  58. Hull C.M., Strongly coupled gravity and duality, Nucl. Phys. B, 2000, V.583, 237-259, hep-th/0004195.
  59. Hull C.M., Duality in gravity and higher spin gauge fields, JHEP, 2001, V.0109, 027, 25 pages, hep-th/0107149.
  60. Hull C.M., Townsend P.K., Unity of superstring dualities, Nucl. Phys. B, 1995, V.438, 109-137, hep-th/9410167.
  61. Iqbal A., Neitzke A., Vafa C., A mysterious duality, Adv. Theor. Math. Phys., 2002, V.5, 769-808, hep-th/0111068.
  62. Julia B., Kac-Moody symmetry of gravitational and supergravity theories, Lect. Appl. Math., 1985, V.21, 355-375.
  63. Julia B., Supergeometry and Kac-Moody algebras, in Vertex Operators in Mathematics and Physics, New York, Springer, 1985, 393-410
  64. Julia B., Levie J., Ray S., Gravitational duality near de Sitter space, JHEP, 2005, V.0511, 025, 13 pages, hep-th/0507262.
  65. Kac V., Infinite dimensional Lie algebras, Birkhauser, Boston, 1983.
  66. Kaku M., Introduction to superstrings and M-theory, 2nd ed., Berlin, Springer, 1999.
  67. Koepsell K., Nicolai H., Samtleben H., An exceptional geometry for d=11 supergravity?, Class. Quant. Grav., 2000, V.17, 3689-3702, hep-th/0006034.
  68. Linde A., Inflation and string cosmology, J. Phys. Conf. Ser., 2005, V.24, 151-160, hep-th/0503195.
  69. Lü H., Pope C.N., Sezgin E., Stelle K.S., Stainless super p-branes, Nucl. Phys. B, 1995, V.456, 669-698, hep-th/9508042.
  70. Marcus N., Schwarz J.H., Field theories that have no manifestly Lorentz-invariant formulation, Phys. Lett. B, 1982, V.115, 111-114.
  71. Martin I., Restuccia A., Duality symmetric actions and canonical quantization, Phys. Lett. B, 1994, V.323, 311-315.
  72. Maznytsia A., Preitschopf C.R., Sorokin D.P., Duality of self-dual actions, Nucl. Phys. B, 1999, V.539, 438-452, hep-th/9805110.
  73. McClain B., Yu F., Wu Y.S., Covariant quantization of chiral bosons and Osp(1|2) symmetry, Nucl. Phys. B, 1990, V.343, 689-704.
  74. Mizoguchi S., E10 Symmetry in one-dimensional supergravity, Nucl. Phys. B, 1998, V.528, 238-264, hep-th/9703160.
  75. Mkrtchyan H., Mkrtchyan R., Remarks on E11 approach, hep-th/0507183.
  76. Moore G., Finite in all directions, hep-th/9305139.
  77. Nicolai H., D=11 supergravity with local SO(16) invariance, Phys. Lett. B, 1987, V.187, 316-320.
  78. Nicolai H., A hyperbolic Lie algebra from supergravity, Phys. Lett. B, 1992, V.276, 333-340.
  79. Nicolai H., Peeters K., Zamaklar M., Loop quantum gravity: an outside review, Class. Quant. Grav., 2005, V.22, R193-R247, hep-th/0501114.
  80. Nicolai H., Warner N.P., The structure of N=16 supergravity in two dimensions, Comm. Math. Phys., 1989, V.125, 369-384.
  81. Nieto J.A., S-duality for linearized gravity, Phys. Lett. A, 1999, V.262, 274-281, hep-th/9910049.
  82. Nurmagambetov A.J., On the sigma-model structure of type IIA supergravity action in doubled field approach, JETP Lett., 2004, V.79, 191-195, hep-th/0403100.
  83. Nurmagambetov A.J., Duality-symmetric gravity and supergravity: testing the PST approach, hep-th/0407116.
  84. Obers N.A., Pioline B., U-duality and M-theory, Phys. Rep., 1999, V.318, 113-225, hep-th/9809039.
  85. Ogievetsky V.I., Infinite-dimensional algebra of general covariance group as the closure of finite dimensional algebras of conformal and linear groups, Lett. Nuov. Cim., 1973, V.8, 988-990.
  86. Pasti P., Sorokin D.P., Tonin M., Note on manifest Lorentz and general coordinate invariance in duality symmetric models, Phys. Lett. B, 1995, V.352, 59-63, hep-th/9503182.
  87. Pasti P., Sorokin D.P., Tonin M., Duality symmetric actions with manifest space-time symmetries, Phys. Rev. D, 1995, V.52, 4277-4281, hep-th/9506109.
  88. Pasti P., Sorokin D.P., Tonin M., On Lorentz invariant actions for chiral p-forms, Phys. Rev. D, 1997, V.55, 6292-6298, hep-th/9611100.
  89. Peldan P., Actions for gravity, with generalizations: a review, Class. Quant. Grav., 1994, V.11, 1087-1132, gr-qc/9305011.
  90. Polchinski J., String theory, Cambridge, Cambridge University Press, 1998.
  91. Pope C.N., Lectures on Kaluza-Klein, http://faculty.physics.tamu.edu/pope/
  92. Salam A., Sezgin E., Supergravities in diverse dimensions, Vol. 1, Singapore, World Scientific, 1989.
  93. Schnakenburg I., West P., Kac-Moody symmetries of IIB supergravity, Phys. Lett. B, 2001, V.517, 421-428, hep-th/0107181.
  94. Schnakenburg I., West P., Massive IIA supergravity as a non-linear realisation, Phys. Lett. B, 2002, V.540, 137-145, hep-th/0204207.
  95. Schwarz J.H., Sen A., Duality symmetric actions, Nucl. Phys. B, 1994, V.411, 35-63, hep-th/9304154.
  96. Sorokin D., Lagrangian description of duality-symmetric fields, in Advances in the Interplay between Quantum and Gravity Physics, Editors P.G. Bergmann and V. de Sabbata, Kluwer Academic Pub., 2002, 365-385.
  97. Schrödinger E., Space-time structure, Cambridge Univ. Press, 1950.
  98. Susskind L., The anthropic landscape of string theory, hep-th/0302219.
  99. Thirring W., A course on mathematical physics, Vol. 2, Field theory, 2nd ed., Berlin, Springer, 1986.
  100. Townsend P.K., The eleven-dimensional supermembrane revisited, Phys. Lett. B, 1995, V.350, 184-187, hep-th/9501068.
  101. Virasoro M.A., Subsidiary conditions and ghosts in dual-resonance model, Phys. Rev. D, 1970, V.1, 2933-2936.
  102. West P., Hidden superconformal symmetry in M theory, JHEP, 2000, V.0008, 007, 21 pages, hep-th/0005270.
  103. West P., E11 and M theory, Class. Quant. Grav., 2001, V.18, 4443-4460, hep-th/0104081.
  104. West P., Very extended E8 and A8 at low levels, gravity and supergravity, Class. Quant. Grav., 2002, V.20, 2393-2406, hep-th/0212291.
  105. Witten E., 2+1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 1988/89, V.311, 46-78.
  106. Witten E., String theory dynamics in various dimensions, Nucl. Phys. B, 1995, V.443, 85-126, hep-th/9503124.
  107. Wotzasek C., The Wess-Zumino term for chiral bosons, Phys. Rev. Lett., 1991, V.66, 129-132.
  108. Wu T.T., Yang C.N., Some remarks about unquantized non-Abelian gauge fields, Phys. Rev. D, 1975, V.12, 3843-3844.
  109. Zwanziger D., Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D, 1971, V.3, 880-890.

Previous article   Next article   Contents of Volume 2 (2006)