Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 1 (2005), 007, 14 pages      math-ph/0511010      http://dx.doi.org/10.3842/SIGMA.2005.007

Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential

Alexander Shapovalov a, b, c, Andrey Trifonov b, c and Alexander Lisok c
a) Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
b) Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
c) Math. Phys. Laboratory, Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia

Received July 27, 2005, in final form October 06, 2005; Published online October 17, 2005

Abstract
The complex WKB-Maslov method is used to consider an approach to the semiclassical integrability of the multidimensional Gross-Pitaevskii equation with an external field and nonlocal nonlinearity previously developed by the authors. Although the WKB-Maslov method is approximate in essence, it leads to exact solution of the Gross-Pitaevskii equation with an external and a nonlocal quadratic potential. For this equation, an exact solution of the Cauchy problem is constructed in the class of trajectory concentrated functions. A nonlinear evolution operator is found in explicit form and symmetry operators (mapping a solution of the equation into another solution) are obtained for the equation under consideration. General constructions are illustrated by examples.

Key words: WKB-Maslov complex germ method; semiclassical asymptotics; Gross-Pitaevskii equation; the Cauchy problem; nonlinear evolution operator; trajectory concentrated functions; symmetry operators.

pdf (306 kb)   ps (201 kb)   tex (19 kb)

References

  1. Cornell E.A., Wieman C.E., Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years some recent experiments, Rev. Mod. Phys., 2002, V.74, 875-893.
    Ketterle W., Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys., 2002, V.74, 1131-1151.
  2. Pitaevskii L.P., Vortex lines in an imperfect Bose gas, Zh. Eksper. Teor. Fiz., 1961, V.40, 646-651 (in Russian).
  3. Gross E.P., Structure of a quantized vortex in boson systems, Nuovo Cimento, 1961, V.20, N 3, 454-477.
  4. Kivshar Y.S., Pelinovsky D.E., Self-focusing and transverse instabilities of solitary waves, Phys. Rep., 2000, V.331, N 4, 117-195.
  5. Bang O., Krolikowski W., Wyller J., Rasmussen J.J., Collapse arrest and soliton stabilization in nonlocal nonlinear media, nlin.PS/0201036.
  6. Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksper. Teor. Fiz., 1971, V.61, 118-134 (English transl.: Sov. Phys. JETP, 1971, V.34, 62-69).
  7. Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevsky L.P., Theory of solitons: The inverse scattering method, Moscow, Nauka, 1980 (English transl.: New York, Plenum, 1984).
  8. Ovsjannikov L.V., Group analysis of differential equations, Moscow, Nauka, 1978 (English transl.: New York, Academic Press, 1982).
  9. Anderson R. L., Ibragimov N.H., Lie-Bäcklund transformations in applications, Philadelphia, SIAM, 1979.
  10. Olver P.J., Application of Lie groups to differential equations, New York, Springer, 1986.
  11. Fushchich W.I., Shtelen W.M., Serov N.I., Symmetry analysis and exact solutions of equations of nonlinear mathematical physics, Dordrecht, Kluwer, 1993.
  12. Fushchich W.I., Nikitin  A.G., Symmetries of equations of quantum mechanics, New York, Allerton Press Inc., 1994.
  13. Belov V.V., Trifonov A.Yu., Shapovalov A.V., The trajectory-coherent approximation and the system of moments for the Hartree type equation, Int. J. Math. and Math. Sci., 2002, V.32, N 6, 325-370.
  14. Belov V.V., Trifonov A.Yu., Shapovalov A.V., Semiclassical trajectory-coherent approximation for the Hartree type equation, Teor. Mat. Fiz., 2002, V.130, N 3, 460-492 (English transl.: Theor. Math. Phys., 2002, V.130, N 3, 391-418).
  15. Shapovalov A.V., Trifonov A.Yu., Lisok A.L., Semiclassical approach to the geometric phase theory for the Hartree type equation, in Proceedinds of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv), Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and I.A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv, 2004, V.50, Part 3, 1454-1465.
  16. Lisok A.L., Trifonov A.Yu., Shapovalov A.V., The evolution operator of the Hartree-type equation with a quadratic potential, J. Phys. A: Math. Gen., 2004, V.37, 4535-4556.
  17. Karasev M.V., Maslov V.P., Nonlinear Poisson brackets: geometry and quantization, Moscow, Nauka, 1991 (English transl.: Nonlinear Poisson brackets: geometry and quantization, Ser. Translations of Mathematical Monographs, V.119, Providence, RI, Amer. Math. Soc., 1993).
  18. Maslov V.P., The complex WKB method for nonlinear equations, Moscow, Nauka, 1977 (English transl.: The complex WKB method for nonlinear equations. I. Linear theory, Basel - Boston - Berlin, Birkhauser Verlag, 1994).
  19. Belov V.V., Dobrokhotov S.Yu., Semiclassical Maslov asymptotics with complex phases. I. General approach, Teor. Mat. Fiz., 1992, V.92, N 2, 215-254 (English transl.: Theor. Math. Phys., 1992, V.92, N 2, 843-868).
  20. Ehrenfest P., Bemerkung über die angenherte Gültigkeit der klassishen Mechanik innerhalb der Quanten Mechanik, Zeits. Phys., 1927, Bd.45, 455-457.
  21. Malkin M.A., Manko V.I., Dynamic symmetries and coherent states of quantum systems, Nauka, Moscow, 1979 (in Russian).
  22. Perelomov A.M., Generalized coherent states and their application, Berlin, Springer-Verlag, 1986.
  23. Meirmanov A.M., Pukhnachov V.V., Shmarev S.I., Evolution equations and Lagrangian coordinates, New York - Berlin, Walter de Gruyter, 1994.

Previous article   Next article   Contents of Volume 1 (2005)