VARIATION OF PARABOLIC COHOMOLOGY AND POINCARÉ DUALITY

by

Michael Dettweiler & Stefan Wewers

Abstract. — We continue our study of the variation of parabolic cohomology ([DW]) and derive an exact formula for the underlying Poincaré duality. As an illustration of our methods, we compute the monodromy of the Picard-Euler system and its invariant Hermitian form, reproving a classical theorem of Picard.

Résumé (Variation de la cohomologie parabolique et dualité de Poincaré). — On continue l'étude de la variation de la cohomologie parabolique commencée dans [DW]. En particulier, on donne des formules pour l'accouplement de Poincaré sur la cohomologie parabolique, et on calcule la monodromie du système de Picard-Euler, confirmant un résultat classique de Picard.

Introduction

Let x_1, \ldots, x_r be pairwise distinct points on the Riemann sphere $\mathbb{P}^1(\mathbb{C})$ and set $U := \mathbb{P}^1(\mathbb{C}) - \{x_1, \ldots, x_r\}$. The Riemann–Hilbert correspondence [Del70] is an equivalence between the category of ordinary differential equations with polynomial coefficients and at most regular singularities at the points x_i and the category of local systems of \mathbb{C}-vectorspaces on U. The latter are essentially given by an r-tuple of matrices $g_1, \ldots, g_r \in \text{GL}_n(\mathbb{C})$ satisfying the relation $\prod_i g_i = 1$. The Riemann–Hilbert correspondence associates to a differential equation the tuple (g_i), where g_i is the monodromy of a full set of solutions at the singular point x_i.

In [DW] the authors investigated the following situation. Suppose that the set of points $\{x_1, \ldots, x_r\} \subset \mathbb{P}^1(\mathbb{C})$ and a local system \mathcal{V} with singularities at the x_i depend on a parameter s which varies over the points of a complex manifold S. More precisely, we consider a relative divisor $D \subset \mathbb{P}^1_S$ of degree r such that for all $s \in S$ the fibre $D_s \subset \mathbb{P}^1(\mathbb{C})$ consists of r distinct points. Let $U := \mathbb{P}^1_S - D$ denote the complement
and let V be a local system on U. We call V a variation of local systems over the base space S. The parabolic cohomology of the variation V is the local system on S

$$W := R^1 \pi_*(j_* V),$$

where $j : U \hookrightarrow \mathbb{P}^1_S$ denotes the natural injection and $\pi : \mathbb{P}^1_S \to S$ the natural projection. The fibre of W at a point $s_0 \in S$ is the parabolic cohomology of the local system V_{s_0}, the restriction of V to the fibre $U_{s_0} = U \cap \pi^{-1}(s_0)$.

A special case of this construction is the middle convolution functor defined by Katz [Kat97]. Here $S = U_0$ and so this functor transforms one local system V_0 on S into another one, W. Katz shows that all rigid local systems on S arise from one-dimensional systems by successive application of middle convolution. This was further investigated by Dettweiler and Reiter [DR03]. Another special case are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada [Ter73] and Deligne–Mostow [DM86]. Here S is the set of ordered tuples of pairwise distinct points on $\mathbb{P}^1(\mathbb{C})$ of the form $s = (0,1,\infty,x_4,\ldots,x_r)$ and V is a one-dimensional system on \mathbb{P}^1_S with regular singularities at the (moving) points $0,1,\infty,x_4,\ldots,x_r$. In [DW] we gave another example where S is a 17-punctured Riemann sphere and the local system V has finite monodromy. The resulting local system W on S does not have finite monodromy and is highly non-rigid. Still, by the comparison theorem between singular and étale cohomology, W gives rise to ℓ-adic Galois representations, with interesting applications to the regular inverse Galois problem.

In all these examples, it is a significant fact that the monodromy of the local system W (i.e. the action of $\pi_1(S)$ on a fibre of W) can be computed explicitly, i.e. one can write down matrices $g_1,\ldots,g_r \in \text{GL}_n$ which are the images of certain generators α_1,\ldots,α_r of $\pi_1(S)$. In the case of the middle convolution this was discovered by Dettweiler–Reiter [DR00] and Völklein [Vö1]. In [DW] it is extended to the more general situation sketched above. In all earlier papers, the computation of the monodromy is either not explicit (like in [Kat97]) or uses ad hoc methods. In contrast, the method presented in [DW] is very general and can easily be implemented on a computer.

It is one matter to compute the monodromy of W explicitly (i.e. to compute the matrices g_i) and another matter to determine its image (i.e. the group generated by the g_i). In many cases the image of monodromy is contained in a proper algebraic subgroup of GL_n, because W carries an invariant bilinear form induced from Poincaré duality. To compute the image of monodromy, it is often helpful to know this form explicitly. After a review of the relevant results of [DW] in Section 1, we give a formula for the Poincaré duality pairing on W in Section 2. Finally, in Section 3 we illustrate our method in a very classical example: the Picard–Euler system.
1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and $D \subset X$ a subset of cardinality $r \geq 3$. We set $U := X - D$. There exists a homeomorphism $\kappa : X \to \mathbb{P}^1(\mathbb{C})$ between X and the Riemann sphere which maps the set D to the real line $\mathbb{P}^1(\mathbb{R}) \subset \mathbb{P}^1(\mathbb{C})$. Such a homeomorphism is called a marking of (X, D).

Having chosen a marking κ, we may assume that $X = \mathbb{P}^1(\mathbb{C})$ and $D \subset \mathbb{P}^1(\mathbb{R})$. Choose a base point $x_0 \in U$ lying in the upper half plane. Write $D = \{x_1, \ldots, x_r\}$ with $x_1 < x_2 < \cdots < x_r \leq \infty$. For $i = 1, \ldots, r - 1$ we let γ_i denote the open interval $(x_i, x_{i+1}) \subset U \cap \mathbb{P}^1(\mathbb{R})$; for $i = r$ we set $\gamma_0 = \gamma_r := (x_r, x_1)$ (which may include ∞).

For $i = 1, \ldots, r$, we let $\alpha_i \in \pi_1(U)$ be the element represented by a closed loop based at x_0 which first intersects γ_{i-1} and then γ_i. We obtain the following well known presentation

$$\pi_1(U, x_0) = \left\langle \alpha_1, \ldots, \alpha_r \mid \prod_i \alpha_i = 1 \right\rangle,$$

which only depends on the marking κ.

Let R be a (commutative) ring. A local system of R-modules on U is a locally constant sheaf \mathcal{V} on U with values in the category of free R-modules of finite rank. Such a local system corresponds to a representation $\rho : \pi_1(U, x_0) \to \text{GL}(V)$, where $V := \mathcal{V}_{x_0}$ is the stalk of \mathcal{V} at x_0 (note that V is a free R-module of finite rank). For $i = 1, \ldots, r$, set $g_i := \rho(\alpha_i) \in \text{GL}(V)$. Then we have

$$\prod_{i=1}^r g_i = 1,$$

and \mathcal{V} can also be given by a tuple $g = (g_1, \ldots, g_r) \in \text{GL}(V)^r$ satisfying the above product-one-relation.

Convention 1.1. — Let α, β be two elements of $\pi_1(U, x_0)$, represented by closed path based at x_0. The composition $\alpha \beta$ is (the homotopy class of) the closed path obtained by first walking along α and then along β. Moreover, we let $\text{GL}(V)$ act on V from the right.

1.2. Fix a local system of R-modules \mathcal{V} on U as above. Let $j : U \hookrightarrow X$ denote the inclusion. The parabolic cohomology of \mathcal{V} is defined as the sheaf cohomology of $j_* \mathcal{V}$, and is written as $H^n_p(U, \mathcal{V}) := H^n(X, j_* \mathcal{V})$. We have natural morphisms $H^n_p(U, \mathcal{V}) \to H^n(U, \mathcal{V})$ and $H^0_p(U, \mathcal{V}) \to H^0(U, \mathcal{V})$ (H_c denotes cohomology with compact support). Moreover, the group $H^n(U, \mathcal{V})$ is canonically isomorphic to the group cohomology $H^n(\pi_1(U, x_0), V)$ and $H^1_p(U, \mathcal{V})$ is the image of the cohomology with compact support in $H^1(U, \mathcal{V})$, see [DW, Prop. 1.1]. Thus, there is a natural inclusion

$$H^1_p(U, \mathcal{V}) \hookrightarrow H^1(\pi_1(U, x_0), V).$$

SOCIÉTÉ MATHEMATIQUE DE FRANCE 2006
Let $\delta : \pi_1(U) \to V$ be a cocycle, i.e. we have $\delta(\alpha\beta) = \delta(\alpha) \cdot \rho(\beta) + \delta(\beta)$ (see Convention 1.1). Set $v_i := \delta(\alpha_i)$. It is clear that the tuple (v_i) is subject to the relation

$$v_1 \cdot g_2 \cdots g_r + v_2 \cdot g_3 \cdots g_r + \cdots + v_r = 0.$$

By definition, δ gives rise to an element in $H^1(\pi_1(U,x_0),V)$. We say that δ is a parabolic cocycle if the class of δ in $H^1(\pi_1(U),V)$ lies in $H^1_p(U,V)$. By [DW, Lemma 1.2], the cocycle δ is parabolic if and only if v_i lies in the image of $g_i - 1$, for all i. Thus, the assignment $\delta \mapsto (\delta(\alpha_1), \ldots, \delta(\alpha_r))$ yields an isomorphism

$$H^1_p(U,V) \cong W_g := H_g/E_g,$$

where

$$H_g := \{ (v_1, \ldots, v_r) \mid v_i \in \text{Im}(g_i - 1), \text{relation (2) holds} \}$$

and

$$E_g := \{ (v \cdot (g_1 - 1), \ldots, v \cdot (g_r - 1)) \mid v \in V \}.$$

1.3. Let S be a connected complex manifold, and $r \geq 3$. An r-configuration over S consists of a smooth and proper morphism $\pi : X \to S$ of complex manifolds together with a smooth relative divisor $D \subset X$ such that the following holds. For all $s \in S$ the fiber $X_s := \pi^{-1}(s)$ is a compact Riemann surface of genus 0. Moreover, the natural map $D \to S$ is an unramified covering of degree r. Then for all $s \in S$ the divisor $D \cap X_s$ consists of r pairwise distinct points $x_1, \ldots, x_r \in X_s$.

Let us fix an r-configuration (X,D) over S. We set $U := X - D$ and denote by $j : U \hookrightarrow X$ the natural inclusion. Also, we write $\pi : U \to S$ for the natural projection. Choose a base point $s_0 \in S$ and set $X_0 := \pi^{-1}(s_0)$ and $D_0 := X_0 \cap D$. Set $U_0 := X_0 - D_0 = \pi^{-1}(s_0)$ and choose a base point $x_0 \in U_0$. The projection $\pi : U \to S$ is a topological fibration and yields a short exact sequence

$$1 \to \pi_1(U_0,x_0) \to \pi_1(U,x_0) \to \pi_1(S,s_0) \to 1.$$

Let V_0 be a local system of R-modules on U_0. A variation of V_0 over S is a local system V of R-modules on U whose restriction to U_0 is identified with V_0. The parabolic cohomology of a variation V is the higher direct image sheaf

$$W := R^1\pi_* (j_* V).$$

By construction, W is a local system with fibre

$$W := H^1_p(U_0,V_0).$$

(Since an r-configuration is locally trivial relative to S, it follows that the formation of W commutes with arbitrary basechange $S' \to S$.) Thus W corresponds to a representation $\rho : \pi_1(S,s_0) \to \text{GL}(W)$. We call ρ the monodromy representation on the parabolic cohomology of V_0 (with respect to the variation V).
1.4. Under a mild assumption, the monodromy representation η has a very explicit description in terms of the Artin braid group. We first have to introduce some more notation. Define

$$O_{r-1} := \{ D' \subset \mathbb{C} \mid |D'| = r - 1 \} = \{ D \subset \mathbb{P}^1(\mathbb{C}) \mid |D| = r, \infty \in D \}.$$

The fundamental group $A_{r-1} := \pi_1(O_{r-1}, D_0)$ is the Artin braid group on $r - 1$ strands. Let $\beta_1, \ldots, \beta_{r-2}$ be the standard generators, see e.g. [DW, § 2.2.] (The element β_i switches the position of the two points x_i and x_{i+1}; the point x_i walks through the lower half plane and x_{i+1} through the upper half plane.) The generators β_i satisfy the following well known relations:

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}, \quad \beta_i \beta_j = \beta_j \beta_i \quad (\text{for } |i - j| > 1). \quad (7)$$

Let R be a commutative ring and V a free R-module of finite rank. Set

$$E_r(V) := \{ g = (g_1, \ldots, g_r) \mid g_i \in \text{GL}(V), \prod g_i = 1 \}.$$

We define a right action of the Artin braid group A_{r-1} on the set $E_r(V)$ by the following formula:

$$g^{\beta_i} := (g_1, \ldots, g_{i+1}, g_i^{-1} g_i g_{i+1}, \ldots, g_r). \quad (8)$$

One easily checks that this definition is compatible with the relations (7). For $g \in E_r(V)$, let H_g be as in (4). For all $\beta \in A_{r-1}$, we define an R-linear isomorphism

$$\Phi(g, \beta) : H_g \longrightarrow H_g^{\beta},$$

as follows. For the generators β_i we set

$$v_1, \ldots, v_r)^{\Phi(g, \beta_i)} := (v_1, \ldots, v_{i+1}, v_i (1 - g_i^{-1} g_i g_{i+1}) + v_i g_{i+1}, \ldots, v_r). \quad (9)$$

For an arbitrary word β in the generators β_i, we define $\Phi(g, \beta)$ using (9) and the ‘cocycle rule’

$$\Phi(g, \beta) \cdot \Phi(g, \beta') = \Phi(g, \beta \beta'). \quad (10)$$

(Our convention is to let linear maps act from the right; therefore, the left hand side of (9) is the linear map obtained from first applying $\Phi(g, \beta)$ and then $\Phi(g, \beta')$.) It is easy to see that $\Phi(g, \beta)$ is well defined and respects the submodule $E_g \subset H_g$ defined by (5). Let

$$\Phi(g, \beta) : W_g \longrightarrow W_g^{\beta}$$

denote the induced map on the quotient $W_g = H_g / E_g$.

Given $g \in E_r(V)$ and $h \in \text{GL}(V)$, we define the isomorphism

$$\Psi(g, h) : \begin{cases} H_g^h \longrightarrow H_g \\ (v_1, \ldots, v_r) \longmapsto (v_1 \cdot h, \ldots, v_r \cdot h). \end{cases}$$
where $g^h := (h^{-1}g_1h, \ldots, h^{-1}g_rh)$. It is clear that $\Psi(g, h)$ maps E_{g^h} to E_g and therefore induces an isomorphism $\bar{\Psi}(g, h) : W_{g^h} \sim W_g$.

Note that the computation of the maps $\bar{\Phi}(g, \beta)$ and $\bar{\Psi}(g, h)$ can easily be implemented on a computer.

1.5. Let S be a connected complex manifold, $s_0 \in S$ a base point and (X, D) an r-configuration over S. As before we set $U := X - D$, $D_0 := D \cap X_{s_0}$ and $U_0 := U \cap X_{s_0}$.

Let \mathcal{V}_0 be a local system of R-modules on U_0 and \mathcal{V} a variation of \mathcal{V}_0 over S. Let \mathcal{W} be the parabolic cohomology of the variation \mathcal{V} and let $\eta : \pi_1(S, s_0) \to \text{GL}(\mathcal{W})$ be the corresponding monodromy representation. In order to describe η explicitly, we find it convenient to make the following assumption on (X, D):

Assumption 1.2

1. $X = \mathbb{P}^1_S$ is the relative projective line over S.
2. The divisor D contains the section $\infty \times S \subset \mathbb{P}^1_S$.
3. There exists a point $s_0 \in S$ such that $D_0 := D \cap \pi^{-1}(s_0)$ is contained in the real line $\mathbb{P}^1(\mathbb{R}) \subset \mathbb{P}^1(\mathbb{C}) = \pi^{-1}(s_0)$.

In practise, this assumption is not a big restriction. See [DW] for a more general setup.

By Assumption 1.2, we can consider D_0 as an element of \mathcal{O}_{r-1}. Moreover, the divisor $D \subset \mathbb{P}^1_S$ gives rise to an analytic map $S \to \mathcal{O}_{r-1}$ which sends $s_0 \in S$ to $D_0 \in \mathcal{O}_{r-1}$. We let $\varphi : \pi_1(S, s_0) \to \text{A}_{r-1}$ denote the induced group homomorphism and call it the braiding map induced by (X, D).

For $t \in \mathbb{R}^+$ let $\Omega_t := \{ z \in \mathbb{C} \mid |z| > t, z \notin (-\infty, 0) \}$. Since Ω_t is contractible, the fundamental group $\pi_1(U_0, \Omega_t)$ is well defined for $t \gg 0$ and independent of t, up to canonical isomorphism. We write $\pi_1(U_0, \infty) := \pi_1(U_0, \Omega_t)$. We can define $\pi_1(U, \infty)$ in a similar fashion, and obtain a short exact sequence

$$1 \to \pi_1(U_0, \infty) \to \pi_1(U, \infty) \to \pi_1(S, s_0) \to 1. \tag{11}$$

It is easy to see that the projection $\pi : U \to S$ has a continuous section $\zeta : S \to U$ with the following property. For all $s \in S$ there exists $t \gg 0$ such that the region Ω_t is contained in the fibre $U_s := \pi^{-1}(s) \subset \mathbb{P}^1(\mathbb{C})$ and such that $\zeta(s) \in \Omega_t$. The section ζ induces a splitting of the sequence (11), which is actually independent of ζ. We will use this splitting to consider $\pi_1(S, s_0)$ as a subgroup of $\pi_1(U, \infty)$.

The variation \mathcal{V} corresponds to a group homomorphism $\rho : \pi_1(U, \infty) \to \text{GL}(V)$, where V is a free R-module. Let ρ_0 denote the restriction of ρ to $\pi_1(U_0, \infty)$ and χ the restriction to $\pi_1(S, s_0)$. By Part (iii) of Assumption 1.2 and the discussion in § 1.1 we have a natural ordering $x_1 < \cdots < x_r = \infty$ of the points in D_0, and a natural choice of a presentation $\pi_1(U_0, \infty) \cong \langle \alpha_1, \ldots, \alpha_r \mid \prod_{i} \alpha_i = 1 \rangle$. Therefore, the local system \mathcal{V}_0 corresponds to a tuple $g = (g_1, \ldots, g_r) \in E(V)$, with $g_i := \rho_0(\alpha_i)$. One checks

SÉMINAIRES & CONGRÈS 13
that the homomorphism $\chi : \pi_1(S,s_0) \to \text{GL}(V)$ satisfies the condition
\begin{equation}
(12) \quad g^{\varphi(\gamma)} = g^{\chi(\gamma)^{-1}},
\end{equation}
for all $\gamma \in \pi_1(S,s_0)$. Conversely, given $g \in E_r(V)$ and a homomorphism $\chi : \pi_1(S,s_0)$ such that (12) holds then there exists a unique variation V which induces the pair (g, χ).

With these notations one has the following result (see [DW, Thm. 2.5]):

Theorem 1.3. — Let W be the parabolic cohomology of V and $\eta : \pi_1(S,s_0) \to \text{GL}(W_g)$ the corresponding monodromy representation. For all $\gamma \in \pi_1(S,s_0)$ we have
\[
\eta(\gamma) = \bar{\Phi}(g, \varphi(\gamma)) \cdot \bar{\Psi}(g, \chi(\gamma)).
\]

Thus, in order to compute the monodromy action on the parabolic cohomology of a local system V_0 corresponding to a tuple $g \in E_r(V)$, we need to know the braiding map $\varphi : \pi_1(S,s_0) \to A_{r-1}$ and the homomorphism $\chi : \pi_1(S,s_0) \to \text{GL}(V)$.

Remark 1.4. — Suppose that R is a field and that the local system V_0 is irreducible, i.e. the subgroup of $\text{GL}(V)$ generated by the elements g_i acts irreducibly on V. Then the homomorphism χ is determined, modulo the scalar action of R^\times on V, by g and φ (via (12)). It follows from Theorem 1.3 that the projective representation $\pi_1(S,s_0) \to \text{PGL}(V)$ associated to the monodromy representation η is already determined by (and can be computed from) g and the braiding map φ.

The above result is crucial for recent work of the first author [Det05] on the middle convolution, where the above methods are used to realize special linear groups as Galois groups over $\mathbb{Q}(t)$.

2. Poincaré duality

Let \mathcal{V} be a local system of R-modules on the punctured Riemann sphere U. If \mathcal{V} carries a non-degenerate symmetric (resp. alternating) form, then Poincaré duality induces on the parabolic cohomology group $H^1_p(U, \mathcal{V})$ a non-degenerate alternating (resp. symmetric) form. Similarly, if $R = \mathbb{C}$ and \mathcal{V} carries a Hermitian form, then we get a Hermitian form on $H^1_p(U, \mathcal{V})$. In this section we derive an explicit expression for this induced form.

2.1. Let us briefly recall the definition of singular (co)homology with coefficients in a local system. See e.g. [Spa93] for more details. For $q \geq 0$ let $\Delta^q = |y_0, \ldots, y_q|$ denote the standard q-simplex with vertices y_0, \ldots, y_q. We will sometimes identify Δ^1 with the closed unit interval $[0,1]$. Let X be a connected and locally contractible topological space and \mathcal{V} a local system of R-modules on X. For a continuous map $f : Y \to X$ we denote by \mathcal{V}_f the group of global sections of $f^*\mathcal{V}$.

In the following discussion, a q-chain will be a function φ which assigns to each singular q-simplex $\sigma : \Delta^q \to X$ a section $\varphi(\sigma) \in \mathcal{V}_\sigma$. Let $\Delta^q(X, \mathcal{V})$ denote the
set of all q-chains, which is made into an R-module in the obvious way. A q-chain φ is said to have compact support if there exists a compact subset $A \subset X$ such that $\varphi|_A = 0$ whenever $\text{supp}(\sigma) \subset X - A$. The corresponding R-module is denoted by $\Delta^q(X, V)$. We define coboundary operators $d : \Delta^q(X, V) \to \Delta^{q+1}(X, V)$ and $d : \Delta^f(X, V) \to \Delta^{f+1}(X, V)$ through the formula

$$(d \varphi)(\sigma) := \sum_{0 \leq i \leq q} (-1)^i \cdot \varphi(\sigma(i)).$$

Here $\sigma(i)$ is the ith face of σ (see [Spa66]) and $\varphi(\sigma(i))$ denotes the unique extension of $\varphi(\sigma)$ to an element of V_x. It is proved in [Spa93] that we have canonical isomorphisms

$$(13) \quad H^n(X, V) \cong H^n(\Delta^\bullet(X, V), d), \quad H^n_c(X, V) \cong H^n(\Delta^\bullet_c(X, V), d),$$

i.e. singular cohomology agrees with sheaf cohomology. Let $x_0 \in X$ be a base point and V the fibre of V at x_0. Then we also have an isomorphism

$$(14) \quad H^1(X, V) \cong H^1(\pi_1(X, x_0), V).$$

Let φ be a 1-chain with $d\varphi = 0$. Let $\alpha : [0, 1] \to X$ be a closed path with base point x_0. By definition, $\varphi(\alpha)$ is a global section of $\alpha^* V$. Then $\alpha \mapsto \delta(\alpha) := \varphi(\alpha)(1)$ defines a cocycle $\delta : \pi_1(X, x_0) \to V$, and this cocycle represents the image of φ in $H^1(X, V)$.

A q-chain φ is called finite if $\varphi(\sigma) = 0$ for all but finitely many simplexes σ. It is called locally finite if every point in X has a neighborhood $U \subset X$ such that $\varphi(\sigma) = 0$ for all but finitely many simplexes σ contained in U. We denote by $\Delta_q(X, V)$ (resp. by $\Delta_q^f(X, V)$) the R-module of all finite (resp. locally finite) q-chains. For a fixed q-simplex σ and a section $v \in V_x$, the symbol $v \otimes \sigma$ will denote the q-chain which assigns v to σ and 0 to all $\sigma' \neq \sigma$. Obviously, every finite (resp. locally finite) q-chain can be written as a finite (resp. possibly infinite) sum $\sum_p v_p \otimes \sigma_p$. We define boundary operators $\partial : \Delta_q(X, V) \to \Delta_{q-1}(X, V)$ and $\partial : \Delta_q^f(X, V) \to \Delta_{q-1}^f(X, V)$ through the formula

$$(\partial(v \otimes \sigma)) := \sum_{0 \leq i \leq q} (-1)^i \cdot v|_{\sigma(i)} \otimes \sigma(i).$$

We define homology (resp. locally finite homology) with coefficients in V as follows:

$$H_q(X, V) := H_q(\Delta^\bullet(X, V)), \quad H_q^f(X, V) := H_q(\Delta^\bullet_c(X, V)).$$

2.2. Let $X := \mathbb{P}^1(\mathbb{C})$ be the Riemann sphere and $D = \{x_1, \ldots, x_r\} \subset \mathbb{P}^1(\mathbb{R})$ a subset of $r \geq 3$ points lying on the real line, with $x_1 < \cdots < x_r \leq \infty$. Let V be a local system of R-modules on $U = X - D$. Choose a base point x_0 lying in the upper half plane. Then V corresponds to a tuple $g = (g_1, \ldots, g_r)$ in $\text{GL}(V)$ with $\prod_i g_i = 1$, where $V := V_{x_0}$. See § 1.1. Let $V^* := \text{Hom}(V, R)$ denote the local system dual to V.

SÉMINAIRES & CONGRÉS 13
It corresponds to the tuple $g^* = (g_1^*, \ldots, g_r^*)$ in $\text{GL}(V^*)$, where V^* is the dual of V and for each $g \in \text{GL}(V)$ we let $g^* \in \text{GL}(V^*)$ be the unique element such that

$$\langle w \cdot g^*, v \cdot g \rangle = \langle w, v \rangle$$

for all $w \in V^*$ and $v \in V$. Note that $V^{**} = V$ because V is free of finite rank over R.

Let φ be a 1-chain with compact support and with coefficients in V^*. Let $a = \sum_{\mu} v_\mu \otimes a_\mu$ be a locally finite 1-chain with coefficients in V. By abuse of notation, we will also write φ (resp. a) for its class in $H^1_c(U, V^*)$ (resp. in $H^1_c(U, V)$). The cap product

$$\varphi \cap a := \sum_{\mu} \langle \varphi(a_\mu), v_\mu \rangle$$

induces a bilinear pairing

$$\cap : H^1_c(U, V^*) \otimes H^1_c(U, V) \longrightarrow R. \tag{15}$$

It is easy to see from the definition that $H^1_c(U, V) = 0$. Therefore, it follows from the Universal Coefficient Theorem for cohomology (see e.g. [Spa66, Thm. 5.5.3]) that the pairing (15) is nonsingular on the left, i.e. identifies $H^1_c(U, V^*)$ with $\text{Hom}(H^1_c(U, V), R)$. The cap product also induces a pairing

$$\cap : H^1(U, V^*) \otimes H^1(U, V) \longrightarrow R. \tag{16}$$

(This last pairing may not be non-singular on the left. The reason is that

$$H_0(U, V) \cong V/\langle \text{Im}(g_i - 1) \mid i = 1, \ldots, r \rangle$$

may not be a free R-module, and so $\text{Ext}^1(H_0(U, V), R)$ may be nontrivial.) Let $f^1 : H^1_c(U, V^*) \to H^1(U, V^*)$ and $f_1 : H^1(U, V) \to H^1_c(U, V)$ denote the canonical maps. Going back to the definition, one can easily verify the rule

$$f^1(\varphi) \cap a = \varphi \cap f_1(a). \tag{17}$$

Let $\varphi \in H^1_c(U, V^*)$ and $\psi \in H^1(U, V)$. The cup product $\varphi \cup \psi$ is defined as an element of $H^2(U, R)$, see [Ste43] or [Spa93]. The standard orientation of U yields an isomorphism $H^2_c(U, R) \cong R$. Using this isomorphism, we shall view the cup product as a bilinear pairing

$$\cup : H^1_c(U, V^*) \otimes H^1(U, V) \longrightarrow R. \tag{18}$$

Similarly, one can define the cup product $\varphi \cup \psi$, where $\varphi \in H^1(U, V^*)$ and $\psi \in H^1_c(U, V)$. Given $\varphi \in H^1_c(U, V^*)$ and $\psi \in H^1_c(U, V)$, one checks that

$$f^1(\varphi) \cup \psi = \varphi \cup f^1(\psi).$$

Proposition 2.1 (Poincaré duality). — There exist unique isomorphisms of R-modules

$$p : H^1_c(U, V) \xrightarrow{\sim} H^1_c(U, V), \quad p : H^1(U, V) \xrightarrow{\sim} H^1(U, V)$$
such that the following holds. If \(\varphi \in H^1_c(U, V^*) \) and \(a \in H^1_c(U, V) \) or if \(\varphi \in H^1(U, V^*) \) and \(a \in H^1(U, V) \) then we have

\[
\varphi \cap a = \varphi \cup p(a).
\]

These isomorphisms are compatible with the canonical maps \(f_1 \) and \(f^1 \), i.e. we have \(p \circ f_1 = f^1 \circ p \).

Proof. — See [Ste43] or [Spa93].

Corollary 2.2. — The cup product induces a non-degenerate bilinear pairing

\[
\cup : H^1_p(U, V^*) \otimes H^1_p(U, V) \to R.
\]

Proof. — Let \(\varphi \in H^1_p(U, V^*) \) and \(\psi \in H^1_p(U, V) \). Choose \(\varphi' \in H^1_c(U, V^*) \) and \(\psi' \in H^1_c(U, V) \) with \(\varphi = f^1(\varphi') \) and \(\psi = f^1(\psi') \). By (18) we have \(\varphi' \cup \psi = \varphi \cup \psi' \). Therefore, the expression \(\varphi \cup \psi := \varphi' \cup \psi' \) does not depend on the choice of the lift \(\varphi' \) and defines a bilinear pairing between \(H^1_p(U, V^*) \) and \(H^1_p(U, V) \). By Proposition 2.1 and since the cap product (15) is non-degenerate on the left, this pairing is also non-degenerate on the right. But the cup product is alternating (i.e. we have \(\varphi \cup \psi = -\psi \cup \varphi \), where the right hand side is defined using the identification \(V^{**} = V \)), so our pairing is also non-degenerate on the right.

For \(a \in H^1_p(U, V^*) \) and \(b \in H^1(U, V) \), the expression

\[
(a, b) := p(a) \cup p(b)
\]
defines another bilinear pairing \(H^1_p(U, V^*) \otimes H^1_p(U, V) \to R \). It is shown in [Ste43] that this pairing can be computed as an ‘intersection product of loaded cycles’, generalizing the usual intersection product for constant coefficients, as follows. We may assume that \(a \) is represented by a locally finite chain \(\sum \nu_\mu^* \otimes \alpha_\mu \) and that \(b \) is represented by a finite chain \(\sum \nu_\nu \otimes \beta_\nu \) such that for all \(\mu, \nu \) the 1-simplexes \(\alpha_\mu \) and \(\beta_\nu \) are smooth and intersect each other transversally, in at most finitely many points. Suppose \(x \) is a point where \(\alpha_\mu \) intersects \(\beta_\nu \). Then there exists \(t_0 \in [0, 1] \) such that \(x = \alpha(t_0) = \beta(t_0) \) and \((\frac{\partial \alpha}{\partial t}|_{t_0}, \frac{\partial \beta}{\partial t}|_{t_0}) \) is a basis of the tangent space of \(U \) at \(x \). We set \(v(\alpha, \beta, x) := 1 \) (resp. \(v(\alpha, \beta, x) := -1 \)) if this basis is positively (resp. negatively) oriented. Furthermore, we let \(\alpha_{\mu, x} \) (resp. \(\beta_{\nu, x} \)) be the restriction of \(\alpha \) (resp. of \(\beta \)) to the interval \([0, t_0] \). Then we have

\[
(\alpha, \beta) = \sum_{\mu, \nu, x} v(\alpha_{\mu, x}, \beta_{\nu, x}) \cdot (v^*)^{\alpha_{\mu, x}, \beta_{\nu, x}}.
\]

2.3. Let \(V \otimes V \to R \) be a non-degenerate symmetric (resp. alternating) bilinear form, corresponding to an injective homomorphism \(\kappa : V \hookrightarrow V^* \) with \(\kappa^* = \kappa \) (resp. \(\kappa^* = -\kappa \)). We denote the induced map \(H^1_p(U, V) \to H^1_p(U, V^*) \) by \(\kappa \) as well. Then

\[
(\varphi, \psi) := \kappa(\varphi) \cup \psi
\]
defines a non-degenerate alternating (resp. symmetric) form on \(H^1_p(U, V) \).
Similarly, suppose that \(R = \mathbb{C} \) and let \(\mathcal{V} \) be equipped with a non-degenerate Hermitian form, corresponding to an isomorphism \(\kappa : \mathcal{V} \cong \mathcal{V}^* \). Then the pairing

\[
(\varphi, \psi) := -i \cdot (\kappa(\bar{\varphi}) \cup \psi)
\]

is a nondegenerate Hermitian form on \(H^1_p(U, \mathcal{V}) \) (we identify \(H^1_{\bar{p}}(U, \mathcal{V}) \) with the complex conjugate of the vector space \(H^1_p(U, \mathcal{V}) \) in the obvious way).

Suppose that the Hermitian form on \(\mathcal{V} \) is positive definite. Then we can express the signature of the form (20) in terms of the tuple \(g \), as follows. For \(i = 1, \ldots, r \), let

\[
g_i \sim \begin{pmatrix}
\alpha_{i,1} & & & \\
& \ddots & & \\
& & \alpha_{i,n} & \\
& & &
\end{pmatrix}
\]

be a diagonalization of \(g_i \in \text{GL}(\mathcal{V}) \). Since the \(g_i \) are unitary, the eigenvalues \(\alpha_{i,j} \) have absolute value one and can be uniquely written in the form \(\alpha_{i,j} = \exp(2\pi i \mu_{i,j}) \), with \(0 \leq \mu_{i,j} < 1 \). Set \(\bar{\mu}_{i,j} := 1 - \mu_{i,j} \) if \(\mu_{i,j} > 0 \) and \(\bar{\mu}_{i,j} := 0 \) otherwise.

Theorem 2.3. — Suppose that \(\mathcal{V} \) is equipped with a positive definite Hermitian form and that \(H^0(U, \mathcal{V}) = 0 \). Then the Hermitian form (20) on \(H^1_p(U, \mathcal{V}) \) has signature

\[
(\sum_{i,j} \mu_{i,j}) - \text{dim}_\mathbb{C} \mathcal{V}, (\sum_{i,j} \bar{\mu}_{i,j}) - \text{dim}_\mathbb{C} \mathcal{V}).
\]

Proof. — If \(\text{dim}_\mathbb{C} \mathcal{V} = 1 \), this formula is proved in [DM86, §2]. The general case is proved in a similar manner. We will therefore only sketch the argument.

Let \(\Omega^\bullet(\mathcal{V}) : \mathcal{O}(\mathcal{V}) \to \Omega^1(\mathcal{V}) \) be the holomorphic \(\mathcal{V} \)-valued de Rham complex on \(U \) ([DM86, §2.7]). Let \(j_*^m \Omega^\bullet(\mathcal{V}) \) denote the subcomplex of \(j_* \Omega^\bullet(\mathcal{V}) \) consisting of sections which are meromorphic at all the singular points. Then we have

\[
H^1(U, \mathcal{V}) = \mathbb{H}^1(X, j_*^m \Omega^\bullet(\mathcal{V})) = H^1\Gamma(X, j_*^m \Omega^\bullet(\mathcal{V})).
\]

We define a subbundle \(\mathcal{E} \) of \(j_*^m \mathcal{O}(\mathcal{V}) \) as follows. Fix an index \(i \) and let \(U_i \subset X \) be a disk-like neighborhood of \(x_i \), which does not contain any other singular point. Set \(U_i^* := U_i - \{x_i\} \). We obtain a decomposition

\[
\mathcal{V}|_{U_i^*} = \oplus_j L_j
\]

into local systems of rank one, corresponding to the diagonalization (21) of the monodromy matrix \(g_i \). In the notation of [DM86, §2.11], we set

\[
\mathcal{E}|_{U_i^*} := \oplus_j \mathcal{O}(\mu_{i,j} \cdot x_i)(L_j).
\]

In other words: a holomorphic section of \(\mathcal{E} \) on \(U_i \) can be written as \(\sum_j z^{-\mu_{i,j}} f_j v_j \), where \(z \) is a local parameter on \(U_i \) vanishing at \(x_i \), \(f_j \) is a holomorphic function and \(v_j \) is a (multivalued) section of \(L_j \) on (the universal cover of) \(U_i^* \). It is clear that
\mathcal{E} is a vector bundle of rank $\dim_\mathbb{C} V$. Moreover, it is easy to see (compare [DM86], Proposition 2.11.1) that

\begin{equation}
\deg \mathcal{E} = \sum_{i,j} \mu_{i,j}.
\end{equation}

In the same manner we define a subbundle \mathcal{E}' of $j^m \Omega^1(\bar{V})$. It is clear that

\begin{equation}
\deg \mathcal{E}' = \sum_{i,j} \bar{\mu}_{i,j},
\end{equation}

where $\bar{\mu}_{i,j}$ is defined as above.

We define the subspace $H^{1,0}(U,V)$ of $H^1(U,V)$ as the image of the map

$$H^0(X, \mathcal{E} \otimes \Omega^1_X) \to \mathbb{H}^1(X, j^m \Omega^\bullet(V)) = H^1(U,V).$$

A local computation shows that $H^{1,0}(U,V)$ is actually contained in $H^1(U,V) = H^1(X, j_* V)$. Let ω be a global section of $\mathcal{E} \otimes \Omega^1_X$ and let $[\omega]$ denote the corresponding class in $H^{1,0}(U,V)$. The pairing (20) applied to $[\omega]$ is then given by the following integral

$$([\omega], [\omega]) = -i \cdot \int_U \omega \wedge \bar{\omega},$$

see [DM86, § 2.18]. Here the integrand is defined as follows: if we write locally $\omega = v \alpha$, where v is a section of V and α is a holomorphic one-form, then $\omega \wedge \bar{\omega} := ||v||^2 \alpha \wedge \bar{\alpha}$.

The definition of \mathcal{E} ensures that the above integral converges. It follows that the pairing (20) is positive definite on $H^{1,0}(U,V)$ and that $H^{1,0}(U,V) = H^0(X, \mathcal{E} \otimes \Omega^1_X)$.

By Riemann–Roch and (22) we have

\begin{equation}
\dim H^{1,0}(U,V) \geq \deg(\mathcal{E} \otimes \Omega^1_X) + \text{rank}(\mathcal{E} \otimes \Omega^1_X)
\end{equation}

\begin{equation}
\geq \sum_{i,j} \mu_{i,j} - \dim V.
\end{equation}

We define $H^{0,1}(U,V)$ as the complex conjugate of $H^{1,0}(U,V)$, considered as a subspace of $H^1(U,V)$. Note that the latter space is the image of $H^0(X, \mathcal{E}' \otimes \Omega^1_X)$, and we can represent an element in $H^{0,1}(U,V)$ as an antiholomorphic form with values in \mathcal{E}'. The same reasoning as above shows that the pairing (20) is negative definite on $H^{0,1}(U,V)$ and that $H^{0,1}(U,V)$ is equal to the complex conjugate of $H^0(X, \mathcal{E}' \otimes \Omega^1_X)$.

Furthermore, we have

\begin{equation}
\dim H^{0,1}(U,V) = \deg(\mathcal{E}' \otimes \Omega^1_X) + \text{rank}(\mathcal{E}' \otimes \Omega^1_X) \geq \sum_{i,j} \bar{\mu}_{i,j} - \dim V.
\end{equation}

Together with (24) we get the inequality

\begin{align*}
\dim H^1(U,V) &\geq \dim H^{1,0}(U,V) + \dim H^{0,1}(U,V) \\
&\geq \sum_{i,j} (\mu_{i,j} + \bar{\mu}_{i,j}) - 2 \dim V \\
&= (r - 2) \dim V - \sum_i \dim \ker(g_i - 1).
\end{align*}
But according to [DW, Remark 1.3], this inequality is an equality. It follows that (24) and (25) are equalities as well. The theorem is now a consequence of the fact pointed out before that the pairing (20) is positive definite on $H^{1,0}(U, V)$ and negative definite on $H^{0,1}(U, V)$.

Remark 2.4. — The authors expect several applications of the above results, such as the construction of totally real Galois representations of classical groups (in combination with the results of [Det05]). Another possible application would be to find new examples of differential equations with a full set of algebraic solutions, in the spirit of the work of Beukers and Heckman [BH89].

2.4.

We are interested in an explicit expression for the pairing of Corollary 2.2. We use the notation introduced at the beginning of § 2.2, with the following modification. By γ_i, we now denote a homeomorphism between the open unit interval $(0, 1)$ and the open interval (x_i, x_{i+1}). We assume that γ_i extends to a path $\bar{\gamma_i} : [0, 1] \to \mathbb{P}^1(\mathbb{R})$ from x_i to x_{i+1}. We denote by $U^+ \subset \mathbb{P}^1(\mathbb{C})$ (resp. U^-) the upper (resp. the lower) half plane and by U^+ (resp. U^-) its closure inside $U = \mathbb{P}^1(\mathbb{C}) - \{x_1, \ldots, x_r\}$. Since \bar{U}^+ is simply connected and contains the base point x_0, an element of V extends uniquely to a section of V over \bar{U}^+. We may therefore identify V with $V(\bar{U}^+)$ and with the stalk of V at any point $x \in \bar{U}^+$.

Choose a sequence of numbers ϵ_n, $n \in \mathbb{Z}$, with $0 < \epsilon_n < \epsilon_{n+1} < 1$ such that $\epsilon_n \to 0$ for $n \to -\infty$ and $\epsilon_n \to 1$ for $n \to \infty$. Let $\gamma_i^{(n)} : [0, 1] \to U$ be the path $\gamma_i^{(n)}(t) := \gamma_i(\epsilon_n t + \epsilon_{n-1}(1-t))$. Let $w_1, \ldots, w_r \in V$. Since supp(γ_i) $\subset \bar{U}^+$, it makes sense to define

$$w_i \otimes \gamma_i := \sum_n w_i \otimes \gamma_i^{(n)}.$$

This is a locally finite 1-chain. Set

$$c := \sum_{i=1}^r w_i \otimes \gamma_i.$$

Note that $\partial(c) = 0$, so c represents a class in $H^1_{lf}(U, V)$.

Lemma 2.5

1. The image of c under the Poincaré isomorphism $H^1_{lf}(U, V) \cong H^1(U, V)$ is represented by the unique cocycle $\delta : \pi_1(U, x_0) \to V$ with

$$\delta(\alpha_i) = w_i - w_{i-1} \cdot g_i.$$

2. The cocycle δ in (i) is parabolic if and only if there exist elements $u_i \in V$ with $w_i - w_{i-1} = u_i \cdot (g_i - 1)$, for all i.

Proof. — For a path $\alpha : [0, 1] \to U$ in U, consider the following conditions:

(a) The support of α is contained either in U^+ or in U^-.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006
In Case (b) (resp. in Case (c)) we identify δ and ϕ.

Therefore we have

\[\varphi(\alpha) = \begin{cases}
0, & \text{if } \alpha \text{ is as in Case (a)} \\
-w_i, & \text{if } \alpha \text{ is as in Case (b)} \\
w_i^{-1}, & \text{if } \alpha \text{ is as in Case (c)}.
\end{cases} \]

(To show the existence and uniqueness of φ, choose a triangulation of U in which all edges satisfy Condition (a), (b) or (c). Then use simplicial approximation.) We claim that φ represents the image of the cycle c under the Poincaré isomorphism. Indeed, this follows from the definition of the Poincaré isomorphism, as it is given in [Ste43]. Write $\alpha_i = \alpha'_i \alpha''_i$, with $\alpha'_i(1) = \alpha''_i(0) \in U^-$. Using the fact that φ is a cocycle we get

\[\varphi(\alpha_i) = \varphi(\alpha'_i) + \varphi(\alpha''_i) = -w_{i-1} + w_i \cdot g_i^{-1}. \]

Therefore we have $\delta(\alpha_i) = \varphi(\alpha'_i) \cdot g_i = w_i - w_{i-1} \cdot g_i$. See Figure 1. This proves (i).

By Section 1.1, the cocycle δ is parabolic if and only if v_i lies in the image of $g_i - 1$. So (ii) follows from (i) by a simple manipulation.

Theorem 2.6. — Let $\varphi \in H^1_p(U, V^*)$ and $\psi \in H^1_p(U, V)$, represented by cocycles $\delta^* : \pi_1(U, x_0) \to V^*$ and $\delta : \pi_1(U, x_0) \to V$. Set $v_i := \delta(\alpha_i)$ and $v_i^* = \delta^*(\alpha_i)$. If we choose $v'_i \in V$ such that $v'_i \cdot (g_i - 1) = v_i$ (see Lemma 2.5), then we have

\[\varphi \cup \psi = \sum_{i=1}^r \left((v_i^*, v'_i) + \sum_{j=1}^{i-1} (v_j^* g_{j+1}^* \cdots g_{i-1}^* (g_i^* - 1), v'_i) \right). \]

Proof. — Let $w_1 := v_1$, $w_i^* := v_i^*$, and $w_i := v_i + w_{i-1} \cdot g_i$. Then we have

\[w_i^* := v_i^* + w_{i-1}^* \cdot g_i^*. \]
for \(i = 2, \ldots, r \). By Lemma 2.5, we can choose \(u_i \in V \) with \(w_i - w_{i-1} = u_i \cdot (g_i - 1) \), for \(i = 1, \ldots, r \). The claim will follow from the following formula:

\[
\varphi \cup \psi = \sum_{i=1}^{r} \langle w_i^* - w_{i-1}^*, u_i - w_{i-1} \rangle.
\]

To prove Equation (26), suppose \(\delta \) is parabolic, and choose \(u_i \in V \) such that \(w_i - w_{i-1} = u_i \cdot (g_i - 1) \). Let \(D_i \subset X \) be a closed disk containing \(x_i \) but none of the other points \(x_j, j \neq i \). We may assume that the boundary of \(D_i \) intersects \(\gamma_{i-1} \) in the point \(\gamma_{i-1}^{(1)} \) but nowhere else, and that \(D_i \) intersects \(\gamma_i \) in the point \(\gamma_i^{(0)} \) but nowhere else. Set \(D_i^+ := D_i \cap \bar{U}^+ \) and \(D_i^- := D_i \cap \bar{U}^- \). Let \(u_i^+ := u_i - w_{i-1} \), considered as a section of \(V \) over \(D_i^+ \) via extension over the whole upper half plane \(U^+ \). It makes sense to define the locally finite chain

\[
u_i^+ \otimes D_i^+ := \sum_{\sigma} u_i^+ \otimes \sigma,
\]

where \(\sigma \) runs over all 2-simplexes of a triangulation of \(D_i^+ \). (Note that \(x_i \not\in D_i^+ \), so this triangulation cannot be finite.) Similarly, let \(u_i^- \in V_{D_i^-} \) denote the section of \(V \) over \(D_i^- \) obtained from \(u_i \in V \) by continuation along a path which enters \(U^- \) from \(U^+ \) by crossing the path \(\gamma_{i-1} \); define \(u_i^- \otimes D_i^- \) as before. Let

\[c' := c + \partial (u_i^+ \otimes D_i^+ + u_i^- \otimes D_i^-)\]

It is easy to check that \(c' \) is homologous to the cocycle

\[
c'' := \sum_i \langle w_i \otimes \gamma_i^{(0)} + u_i^+ \otimes \beta_i^+ + u_i^- \otimes \beta_i^- \rangle,
\]

where \(\beta_i^+ \) (resp. \(\beta_i^- \)) is the path from \(\gamma_i^{(0)} \) to \(\gamma_i^{(1)} \) (resp. from \(\gamma_i^{(1)} \) to \(\gamma_i^{(0)} \)) running along the upper (resp. lower) part of the boundary of \(D_i \). See Figure 2. Note that \(c'' \) is finite and that, by construction, the image of \(c'' \) under the canonical map \(f_1 : H_1(U, V) \to H_1^U(U, V) \) is equal to the class of \(c \). Let \(\psi' \in H_1^U(U, V) \) denote the image of \(c'' \) under the Poincaré isomorphism \(H_1(U, V) \cong H_1^U(U, V) \). The last statement of Proposition 2.1 shows that \(\psi' \) is a lift of \(\psi \in H_1(U, V) \).

Let \(c^* := \sum_i w_i^* \otimes \gamma_i^* \in C_1(U, V^*) \). By (i) and the choice of \(w_i^* \), the image of \(c^* \) under the Poincaré isomorphism \(H_1^U(U, V^*) \cong H_1(U, V^*) \) is equal to \(\varphi \). By definition,
we have \(\varphi \cup \psi = (c^*, c'') \). To compute this intersection number, we have to replace \(c^* \) by a homologous cycle which intersects the support of \(c'' \) at most transversally. For instance, we can deform the open paths \(\gamma_i \) into open paths \(\gamma'_i \) which lie entirely in the upper half plane. See Figure 2. It follows from (19) that

\[
(c^*, c'') = \sum_i \langle w^*_i, u^+_i \rangle - \langle w^*_i, u^+_i \rangle = \sum_i \langle w^*_i - w^*_i, u_i - u_{i-1} \rangle.
\]

This finishes the proof of (26). The formula in (iv) follows from (26) from a straightforward computation, expressing \(u_i \) and \(u_i \) in terms of \(v_i \) and \(v'_i \).

\begin{remark}
In the somewhat different setup, a similar formula as in Theorem 2.6 can be found in [VÖ1, §1.2.3].
\end{remark}

3. The monodromy of the Picard–Euler system

Let

\[
S := \{ (s, t) \in \mathbb{C}^2 \mid s, t \neq 0, 1, s \neq t \},
\]

and let \(X := \mathbb{P}^3_\mathbb{C} \) denote the relative projective line over \(S \). The equation

\[
y^3 = x(x-1)(x-s)(x-t)
\]

defines a finite Galois cover \(f : Y \to X \) of smooth projective curves over \(S \), namely ramified along the divisor \(D := \{0, 1, s, t, \infty\} \subset X \). The curve \(Y \) is called the Picard curve. Let \(G \) denote the Galois group of \(f \), which is cyclic of order 3. The equation \(\sigma^* y = \chi(\sigma) \cdot y \) for \(\sigma \in G \) defines an injective character \(\chi : G \hookrightarrow \mathbb{C}^\times \). As we will see below, the \(\chi \)-eigenspace of the cohomology of \(Y \) gives rise to a local system on \(S \) whose associated system of differential equations is known as the Picard–Euler system.

We fix a generator \(\sigma \) of \(G \) and set \(\omega := \chi(\sigma) \). Let \(K := \mathbb{Q}(\omega) \) be the quadratic extension of \(\mathbb{Q} \) generated by \(\omega \) and \(\mathcal{O}_K = \mathbb{Z}[\omega] \) its ring of integers. The family of \(G \)-covers \(f : Y \to X \) together with the character \(\chi \) of \(G \) corresponds to a local system of \(\mathcal{O}_K \)-modules on \(U := X - D \). Set \(s_0 := (2, 3) \in S \) and let \(V_0 \) denote the restriction of \(\mathcal{V} \) to the fibre \(U_0 = \mathbb{A}^1_\mathbb{C} - \{0, 1, 2, 3\} \) of \(U \to S \) over \(s_0 \). We consider \(\mathcal{V} \) as a variation of \(V_0 \) over \(S \). Let \(\mathcal{W} \) denote the parabolic cohomology of this variation; it is a local system of \(\mathcal{O}_K \)-modules of rank three, see [DW, Rem. 1.4]. Let \(\chi' : G \hookrightarrow \mathbb{C}^\times \) denote the conjugate character to \(\chi \) and \(\mathcal{W}' \) the parabolic cohomology of the variation of local systems \(\mathcal{V}' \) corresponding to the \(G \)-cover \(f \) and the character \(\chi' \). We write \(\mathcal{W}_\mathbb{C} \) for the local system of \(\mathbb{C} \)-vectorspaces \(\mathcal{W} \otimes \mathbb{C} \). The maps \(\pi_Y : Y \to S \) and \(\pi_X : X \to S \) denote the natural projections.

\begin{proposition}
We have a canonical isomorphism of local systems

\[
R^1\pi_Y_\ast \mathcal{L} \cong \mathcal{W}_\mathbb{C} \oplus \mathcal{W}'_\mathbb{C}.
\]

This isomorphism identifies the fibres of \(\mathcal{W}_\mathbb{C} \) with the \(\chi \)-eigenspace of the singular cohomology of the Picard curves of the family \(f \).
\end{proposition}
Proof. — The group G has a natural left action on the sheaf $f_*\mathbb{C}$. We have a canonical isomorphism of sheaves on X

$$f_*\mathbb{C} \cong \mathbb{C} \oplus j_*\mathcal{V} \oplus j_*\mathcal{V}',$$

which identifies $j_*\mathcal{V}$, fibre by fibre, with the χ-eigenspace of $f_*\mathbb{C}$. Now the Leray spectral sequence for the composition $\pi_Y = \pi_X \circ f$ gives isomorphisms of sheaves on S

$$R^1\pi_Y_*\mathbb{C} \cong R^1\pi_{X,*}(f_*\mathbb{C}) \cong W \oplus W'.$$

Note that $R^1\pi_Y_*\mathbb{C} = 0$ because the genus of X is zero. Since the formation of $R^1\pi_Y_*\mathbb{C}$ commutes with the G-action, the proposition follows.

The comparison theorem between singular and deRham cohomology identifies $R^1\pi_Y_*\mathbb{C}$ with the local system of horizontal sections of the relative deRham cohomology module $R^1_{\text{dR}}\pi_Y_*\mathcal{O}_Y$, with respect to the Gauss-Manin connection. The χ-eigenspace of $R^1_{\text{dR}}\pi_Y_*\mathcal{O}_Y$ gives rise to a Fuchsian system known as the Picard–Euler system. In more classical terms, the Picard–Euler system is a set of three explicit partial differential equations in s and t of which the period integrals

$$I(s,t; a,b) := \int_a^b \frac{dx}{\sqrt{x(x-1)(x-s)(x-t)}}$$

(with $a,b \in \{0, 1, s, t, \infty\}$) are a solution. See [Pic83], [Hol86], [Hol95]. It follows from Proposition 3.1 that the monodromy of the Picard–Euler system can be identified with the representation $\eta: \pi_1(S) \to \text{GL}_3(\mathcal{O}_K)$ corresponding to the local system W.

Theorem 3.2 (Picard). — For suitable generators $\gamma_1, \ldots, \gamma_5$ of the fundamental group $\pi_1(S)$, the matrices $\eta(\gamma_1), \ldots, \eta(\gamma_5)$ are equal to

$$\begin{pmatrix} \omega^2 & 0 & 1 - \omega \\ \omega - \omega^2 & 1 & \omega^2 - 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} \omega^2 & 0 & 1 - \omega^2 \\ 1 - \omega^2 & 1 & \omega^2 - 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & \omega^2 - 1 \\ 0 & \omega^2 - 1 & -2\omega \end{pmatrix}, \quad \begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} \omega^2 & \omega - \omega^2 & 0 \\ 0 & 1 & 0 \\ 1 - \omega & \omega^2 - 1 & 1 \end{pmatrix}.$$

The invariant Hermitian form (induced by Poincaré duality, see Corollary 2.2) is given by the matrix

$$\begin{pmatrix} a & 0 & 0 \\ 0 & 0 & a \\ 0 & a & 0 \end{pmatrix}.$$
Figure 3. The braids $\gamma_1, \ldots, \gamma_5$

where $a = \frac{1}{2}(\omega^2 - \omega)$.

Proof. — The divisor $D \subset \mathbb{P}^1_S$ satisfies Assumption 1.2. Let $\varphi : \pi_1(S, s_0) \to A_4$ be the associated braiding map. Using standard methods (see e.g. [Vö1] and [DR00]), or by staring at Figure 3, one can show that the image of φ is generated by the five braids

$$\beta_2^2, \beta_3\beta_2^2\beta_3^{-1}, \beta_3\beta_2^2\beta_2^{-1}\beta_3^{-1}, \beta_2^2, \beta_2\beta_2^2\beta_2^{-1}.$$

It is clear that these five braids can be realized as the image under the map φ of generators $\gamma_1, \ldots, \gamma_5 \in \pi_1(S, s_0)$.

Considering the ∞-section as a ‘tangential base point’ for the fibration $U \to S$ as in §1.5, we obtain a section $\pi_1(S) \to \pi_1(U)$. We use this section to identify $\pi_1(S)$ with a subgroup of $\pi_1(U)$. Let $\alpha_1, \ldots, \alpha_5$ be the standard generators of $\pi_1(U_0)$. Let $\rho : \pi_1(U) \to K^\times$ denote the representation corresponding to the G-cover $f : Y \to X$ and the character $\chi : G \to K^\times$, and $\rho_0 : \pi_1(U_0) \to G$ its restriction to the fibre above s_0. Using (27) one checks that ρ_0 corresponds to the tuple $g = (\omega, \omega, \omega, \omega, \omega^2)$, i.e. that $\rho_0(\alpha_i) = g_i$. Also, since the leading coefficient of the right hand side of (27) is one, the restriction of ρ to $\pi_1(S)$ is trivial. Hence, by Theorem 1.3, we have

$$\eta(\gamma_i) = \Phi(g, \varphi(\gamma_i)).$$

A straightforward computation, using (9) and the cocycle rule (10), gives the value of $\eta(\gamma_i)$ (in form of a three-by-three matrix depending on the choice of a basis of W_k). For this computation, it is convenient to take the classes of $(1, 0, 0, 0, -\omega^2)$, $(0, 1, 0, 0, -\omega)$ and $(0, 0, 1, 0, -1)$ as a basis. In order to obtain the 5 matrices stated in the theorem, one has to use a different basis, i.e. conjugate with the matrix

$$B = \begin{pmatrix} 0 & -\omega - 1 & -\omega \\ \omega + 1 & \omega + 1 & \omega + 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

The claim on the Hermitian form follows from Theorem 2.6 by another straightforward computation.

\[\square \]
Remark 3.3. — Theorem 3.2 is due to Picard, see \cite{Pic83, p. 125} and \cite{Pic84, p. 181}. He obtains exactly the matrices given above, but he does not list all of the corresponding braids. A similar list as above is obtained in \cite{Hol86} using different methods.

Remark 3.4. — It is obvious from Theorem 3.2 that the Hermitian form on \mathcal{W} has signature $(1, 2)$ or $(2, 1)$, depending on the choice of the character χ. This confirms Theorem 2.3 in this special case.

References

\cite{Del70} P. Deligne – \textit{Equations différentielles à points singuliers réguliers}, Lecture Notes in Mathematics, no. 163, Springer-Verlag, 1970.

\cite{Hol95} David W. W. P. Holzapfel – \textit{The ball and some Hilbert problems}, Lectures in Mathematics ETH Zürich, Birkhäuser, 1995.

\cite{Pic84} E. Picard, Sur les formes quadratiques ternaires indéfinies à indéterminées conjuguées et sur les fonctions hyperfuchsiennes correspondantes, \textit{Acta Math.} 5 (1884), p. 121–182.

\cite{Spa66} E. Spanier – \textit{Algebraic topology}, Springer–Verlag, 1966.

\cite{Ste43} N. Steenrod – Homology with local coefficients, \textit{Ann. of Math.} 44 (1943), no. 2, p. 610–627.

M. DETTWEILER, Universität Heidelberg • E-mail: michael.dettweiler@iwr.uni-heidelberg.de

Stefan Wewers, Universität Bonn • E-mail: wewers@math.uni-bonn.de