On the homeotopy group of the non orientable surface of genus three

FRANCISCO JAVIER GONZÁLEZ–ACUÑA
Universidad Nacional Autónoma de México, México

JUAN MANUEL MÁRQUEZ–BOBADILLA
Universidad de Guadalajara, México

ABSTRACT. In this note we prove that, if \(N_3 = P \# P \# P \), where \(P := \mathbb{R}P^2 \), then the canonical homomorphism from \(\text{Diff}(N_3) \) onto the homeotopy group \(\text{Mod}(N_3) \) has a section. To do this we first prove that \(\text{Mod}(N_3) = \text{GL}(2, \mathbb{Z}) \).

Keywords and phrases. Homeotopy group, non-orientable surface.

2000 Mathematics Subject Classification. Primary: 57M60. Secondary: 20F38.

RESUMEN. En esta nota probamos que, si \(N_3 = P \# P \# P \), donde \(P := \mathbb{R}P^2 \), entonces el homomorfismo canónico de \(\text{Diff}(N_3) \) sobre el grupo de homeotopía \(\text{Mod}(N_3) \) tiene una sección. Para hacer esto, primero probamos que \(\text{Mod}(N_3) = \text{GL}(2, \mathbb{Z}) \).

1. Introduction

If \(M \) is a closed smooth surface we denote by \(\text{Mod}(M) \) the quotient group \(\text{Diff}(M)/\text{Diff}_0(M) \) where \(\text{Diff}(M) \) is the group of all diffeomorphisms from \(M \) to \(M \) and \(\text{Diff}_0(M) \) is the normal subgroup of diffeomorphisms isotopic to the identity. We call it the homeotopy group or the extended mapping class group of \(M \).

S. Morita [9], [10] has shown that, if \(M_g \) is the closed genus \(g \) orientable surface, then the canonical epimorphism

\[\text{Diff}(M_g) \to \text{Mod}(M_g) \]

from the group of diffeomorphisms of \(M_g \) onto its extended mapping class group admits no section provided that \(g \geq 18 \).

When \(g \leq 1 \) it is easy to show that the homomorphism does have a splitting: If \(g = 0 \) then \(\text{Mod}(M_0) = \mathbb{Z}_2 \); a section is defined by sending the non trivial element of \(\text{Mod}(M_0) \) to the antipodal map of \(S^2 \). Also, for genus one \(M_1 = \)
Lemma 2.1. \(\mathbb{R}^2/\mathbb{Z}^2 \) and \(\text{Mod}(M_1) = GL(2, \mathbb{Z}) \) (cf. [11, p. 26]). The standard linear action of \(GL(2, \mathbb{Z}) \) on \((\mathbb{R}^2, \mathbb{Z}^2) \) defines a splitting of \(\text{Diff}(M_1) \to \text{Mod}(M_1) \).

If \(N_k \) is the genus \(k \) non-orientable surface (the connected sum of \(k \) copies of \(P \)) then

\[
\text{Diff}(N_k) \to \text{Mod}(N_k),
\]

has a section if \(k \leq 2 \).

For, if \(k = 1 \) then \(\text{Mod}(P) = 1 \) (see [4]) and trivially a section exists. If \(k = 2 \) and we think of \(N_2 \) as \(S^1 \times S^1 \) with identifications \((z, w) \sim (-z, \bar{w}) \), then \(\text{Mod}(N_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) and the image of a section is \(\{ f_{\epsilon_1, \epsilon_2} : |\epsilon_1| = |\epsilon_2| = 1 \} \) where \(f_{\epsilon_1, \epsilon_2}(z, w) = (z^{\epsilon_1}, w^{\epsilon_2}) \) (see [6], [12]).

Here we will prove that

\[
\text{Diff}(N_k) \to \text{Mod}(N_k),
\]

also has a section if \(k = 3 \).

2. Proofs

First, we will show that \(\text{Mod}(N_3) = GL(2, \mathbb{Z}) \).

In [2], using [3], a presentation of \(\text{Mod}(N_3) \) is given and one can see that this presentation defines \(GL(2, \mathbb{Z}) \), (see [7]).

However we feel that this result is not well known. In here we will give a proof of the fact that \(\text{Mod}(N_3) = \text{Mod}(M_1)(= GL(2, \mathbb{Z})) \) using simple methods in algebraic topology.

We will work in the smooth category.

Let \(T_0 \) be a torus minus the interior of a 2–disk \(D \). An arc \(\alpha \) properly embedded in \(T_0 \) is trivial if there is a 2–disk in \(T_0 \) whose boundary is the union of \(\alpha \) and an arc in \(\partial T_0 \). This is equivalent to the condition that \(\alpha \) represent the trivial element of \(H_1(T_0, \partial T_0; \mathbb{Z}_2) \). In the following lemma \(\cup_{i=1}^{n} \alpha_i/\varphi \) will denote the quotient space of the union of arcs \(\cup_{i=1}^{n} \alpha_i \) obtained by identifying \(x \in \partial (\cup_{i=1}^{n} \alpha_i) \) with \(\varphi(x) \).

Lemma 2.1. Let \(T_0 \) be the torus minus the interior of a 2–disk. Let \(\varphi : \partial T_0 \to \partial T_0 \) be a fixed point free involution. Let \(\alpha_1, \ldots, \alpha_n \), with \(n \) odd, be disjoint arcs properly embedded in \(T_0 \) such that \(\varphi \partial (\cup_{i=1}^{n} \alpha_i) = \partial (\cup_{i=1}^{n} \alpha_i) \), \(\cup_{i=1}^{n} \alpha_i/\varphi \) is connected and \(\sum_{i=1}^{n} |\alpha_i| = 0 \in H_1(T_0, \partial T_0; \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Then at least one \(\alpha_i \) is trivial.

Proof. Let \(a, b, c \) be the nontrivial elements of \(H_1(T_0, \partial T_0; \mathbb{Z}_2) \). Let \(a_1, \ldots, a_p \) be the arcs of \(\{ \alpha_1, \ldots, \alpha_n \} \) which represent \(a \). Let \(b_1, \ldots, b_q \) those which represent \(b \) and \(c_1, \ldots, c_r \) those which represent \(c \).

Assume no \(\alpha_i \) is trivial, that is \(|\alpha_i| \neq 0 \) for all \(i \). Then \(0 = \sum_{i=0}^{n} |\alpha_i| = pa + bq + rc \) in \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \) and \(p + q + r = n \), an odd number. If one of the numbers \(p, q, r \) is even then the other two must also be even; but this contradicts the fact that \(n \) is odd. Therefore \(p, q, r \) are all odd.

Notice that for any \(i \) and any \(j \) the 0–spheres \(\partial \alpha_i \) and \(\partial b_j \) are linked in \(\partial T_0 \) (meaning that both components of \(\partial T_0 - \partial \alpha_i \) contain one point of \(\partial b_j \)).
Similarly ∂b_i and ∂c_k are linked, and ∂c_k and ∂a_i are linked, for any values of i, j, k. Also ∂a_i and ∂a_j are not linked ∂b_i and ∂b_j are not linked, ∂c_i and ∂c_k are not linked if $i \neq j$.

Figure 1

This implies that after renumbering the a’s, b’s and c’s the arrangement of the points of $\cup_{i=1}^{p} \partial a_i$ in ∂T_0 is: $a_1^+, a_2^+, \ldots, a_p^+, b_1^+, \ldots, b_q^+, c_1^+, \ldots, c_k^+, a_{p-1}^-, a_{p-2}^-, \ldots, a_2^-, a_1^-, b_q^-, \ldots, b_1^-, c_k^-, \ldots, c_1^-$ as shown in figure 1; here $\partial a_i = \{a_i^+, a_i^−\}$, $\partial b_j = \{b_j^+, b_j^−\}$ and $\partial c_k = \{c_k^+, c_k^−\}$.

But then the number of components of $\cup a_i / \varphi$ is $\frac{p+1}{2} + \frac{q+1}{2} + \frac{r+1}{2} > 1$ (think of φ as the antipodal involution), contradicting that $\cup a_i / \varphi$ is connected. Hence at least one a_i is trivial. \Box

We write $N = N_3$ henceforth.

Proposition 2.1. Let μ and α be simple closed curves in N representing the element of order 2 in $H_1(N; \mathbb{Z})$. Then α is isotopic to μ.

Proof. Write $N = T_0 \cup P_0$, the union of a punctured torus T_0 and a Möbius band P_0, with $T_0 \cap P_0 = \partial T_0 = \partial P_0$. We think of P_0 as an I–bundle over the circle and denote by $\varphi: \partial T_0 \to \partial T_0$ the fixedpoint free involution that interchanges the boundary points of each fiber.

We may assume that μ is the image of a section of this bundle. We may also assume that α intersects ∂T_0 minimally, that is, $|a \cap \partial T_0| \geq |a \cap \partial T_0|$ for any curve a’ ambient isotopic to α. We claim that $|\alpha \cap \partial T_0| = 0$.

Suppose $|\alpha \cap \partial T_0| > 0$. Then we can assume that $\alpha \cap P_0$ consists of n I–fibers f_1, \ldots, f_n and $\alpha \cap T_0$ is the union of n disjoint arcs $\alpha_1, \ldots, \alpha_n$ properly embedded in T_0. As $H_1(N) = H_1(P_0, \partial P_0) \oplus H_1(T_0, \partial T_0) = \mathbb{Z}_2 \oplus \mathbb{Z}^2$ and as α represents the element of order two, then we must have that $\sum \{\alpha_i \} \neq 0$ in $H_1(T_0, \partial T_0; \mathbb{Z}_2)$ (that is, n must be odd) and $\sum \{\alpha_i \} = 0$ in $H_1(T_0, \partial T_0; \mathbb{Z}_2)$. By Lemma 2.1, at least one α_i must be trivial and so we can isotope α_i to reduce the number of components of its intersection with ∂T_0. This contradicts our minimality assumption. Hence $|\alpha \cap \partial T_0| = 0$ and, since α is not trivial, it is isotopic to μ. \Box

Proposition 2.2. Let $N = T_0 \cup P_0$ with $T_0 \cap P_0 = \partial T_0 = \partial P_0$. Then any diffeomorphism h of N is isotopic to one leaving T_0 and P_0 invariant.

Proof. Let μ be the image of a section of P_0. By Proposition 2.1, $h\mu$ is ambient isotopic to μ so we may assume that h leaves μ invariant. But then we can also assume that it leaves its tubular neighborhood P_0 invariant. \Box
Theorem 2.3. The natural homomorphism
\[\psi : \operatorname{Mod}(N) \to \operatorname{Aut}(H_1(N)/\operatorname{Torsion}(H_1(N)) \cong GL(2, \mathbb{Z})) , \]
is an isomorphism.

Proof. Again write \(N = T_0 \cup P_0 \) and \(T = T_0 \cup D \). Any automorphism of \(H_1(T) \) is induced by a diffeomorphism of \(T \) which can be isotoped so that the 2−disk \(D \) is invariant. Hence any automorphism of \(H_1(T_0, \partial T_0) \) is induced by a diffeomorphism of \(T_0 \). Since any diffeomorphism of \(\partial P_0 \) can be extended to a diffeomorphism of \(P_0 \) (a nice exercise), it follows that any automorphism of \(H_1(N)/\operatorname{Torsion}(H_1(N)) \) is induced by a diffeomorphism of \(N \). Thus \(\psi \) is a monomorphism. □✓

Theorem 2.4. The natural homomorphism \(\operatorname{Diff}(N) \to \operatorname{Mod}(N) \) has a section.

Proof. Let \(T = \mathbb{R}^2/\mathbb{Z}^2 \). Consider the blow up \(B(T) \) of \(T \) at the identity element \(e \) of \(T \). Recall \(B(T) = (T - \{e\}) \cup P^1 \) where \(P^1 \) is the space of one-dimensional vector subspaces of \(\mathbb{R}^2 \). The blow up \(B(T) \) is diffeomorphic to \(N \).

If \(f \) is a linear automorphism of \(\mathbb{R}^2 \) with \(f(\mathbb{Z}^2) = \mathbb{Z}^2 \), it induces a diffeomorphism of \(T - \{e\} \), a diffeomorphism of \(P^1 \) and a diffeomorphism of \(B(T) \) (cf.[1, Lemma 2.1]). Thus the standard linear action of \(GL(2, \mathbb{Z}) \) on \(T \) induces an action of \(GL(2, \mathbb{Z}) \) on \(B(T) \).

Hence we have a homomorphism
\[GL(2, \mathbb{Z}) \to \operatorname{Diff}(B(T)) , \]
which composed with
\[\operatorname{Diff}(B(T)) \to \operatorname{Mod}(B(T)) \cong \operatorname{Aut}(H_1(N)/\operatorname{Torsion}(H_1(N))) \]
is an isomorphism. □✓

Acknowledgements. We thank A. Verjovsky, A. Ramírez, X. Gómez-Mont, O. Calvo y V. Núñez for conversations about blowups.

References

(Recibido en mayo de 2006. Aceptado en julio de 2006)