Home  Current  Past volumes  About  Login  Notify  Contact  Search  


References[1] Aldous, D., Stopping times and tightness. Ann. Probability, Volume 6, Issue 2 (1978), pages 335–340. MR0474446 [2] Anderson, W. J., Continuoustime Markov chains. Springer Series in Statistics: Probability and its Applications. SpringerVerlag, New York, 1991. MR1118840 [3] Asselah, A., Ferrari, P. A., and Groisman, P., Quasistationary distributions and FlemingViot processes in finite spaces. J. Appl. Probab., Volume 48, Issue 2 (2011), pages 322–332. MR2840302 [4] Athreya, K. B. and Ney, P. E., Branching processes. SpringerVerlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 196. MR0373040 [5] Bansaye, V., Surviving particles for subcritical branching processes in random environment. Stochastic Process. Appl., Volume 119, Issue 8 (2009), pages 2436–2464. MR2532207 [6] Barbour, A. D. and Pollett, P. K., Total variation approximation for quasistationary distributions. J. Appl. Probab., Volume 47, Issue 4 (2010), pages 934–946. MR2752899 [7] Berezin, F. A. and Shubin, M. A., The Schrödinger equation, volume 66 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1983 Russian edition by Yu. Rajabov, D. A. Leĭtes and N. A. Sakharova and revised by Shubin, With contributions by G. L. Litvinov and Leĭtes. MR1186643 [8] Bieniek, M., Burdzy, K., and Finch, S., Nonextinction of a flemingviot particle model. Probab. Theory Related Fields (2011), pages 1–40. MR2925576 [9] Billingsley, P., Convergence of probability measures. John Wiley & Sons Inc., New York, 1968. MR0233396 [10] Burdzy, K., Holyst, R., Ingerman, D., and March, P., Configurational transition in a flemingviottype model and probabilistic interpretation of laplacian eigenfunctions. J. Phys. A, Volume 29 (1996), pages 2633–2642. [11] Burdzy, K., Hołyst, R., and March, P., A FlemingViot particle representation of the Dirichlet Laplacian. Comm. Math. Phys., Volume 214, Issue 3 (2000), pages 679–703. MR1800866 [12] Carey, Liedo, P., Orozco, D., and Vaupel, J. W., Slowing of mortality rates at older ages in large medfly cohorts. Science, Volume 258 (1992), pages 457–461. [13] Cattiaux, P., Collet, P., Lambert, A., Martínez, S., Méléard, S., and San Martín, J., Quasistationary distributions and diffusion models in population dynamics. Ann. Probab., Volume 37, Issue 5 (2009), pages 1926–1969. MR2561437 [14] Cattiaux, P. and Méléard, S., Competitive or weak cooperative stochastic lotkavolterra systems conditioned to nonextinction. J. Math. Biology, Volume 6 (2010), pages 797–829. MR2606515 [15] Collet, P., Martínez, S., Méléard, S., and San Martín, J., Quasistationary distributions for structured birth and death processes with mutations. Probab. Theory Related Fields, Volume 151, Issue 1 (2011), pages 191–231. MR2834717 [16] Collet, P., Martínez, S., and San Martín, J., Asymptotic laws for onedimensional diffusions conditioned to nonabsorption. Ann. Probab., Volume 23, Issue 3 (1995), pages 1300–1314. MR1349173 [17] CoolenSchrijner, P. and van Doorn, E. A., Quasistationary distributions for a class of discretetime Markov chains. Methodol. Comput. Appl. Probab., Volume 8, Issue 4 (2006), pages 449–465. MR2329282 [18] Darroch, J. N. and Seneta, E., On quasistationary distributions in absorbing discretetime finite Markov chains. J. Appl. Probability, Volume 2 (1965), pages 88–100. MR0179842 [19] Darroch, J. N. and Seneta, E., On quasistationary distributions in absorbing continuoustime finite Markov chains. J. Appl. Probability, Volume 4 (1967), pages 192–196. MR0212866 [20] Etheridge, A. M., Survival and extinction in a locally regulated population. Ann. Appl. Probab., Volume 14, Issue 1 (2004), pages 188–214. MR2023020 [21] Ethier, S. N. and Kurtz, T. G., Markov processes, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1986. MR0838085 [22] Ferrari, P. A., Kesten, H., Martínez, S., and Picco, P., Existence of quasistationary distributions. A renewal dynamical approach. Ann. Probab., Volume 23, Issue 2 (1995), pages 501–521. MR1334159 [23] Ferrari, P. A. and Marić, N., Quasi stationary distributions and FlemingViot processes in countable spaces. Electron. J. Probab., Volume 12, Issue 24 (2007), pages 684–702. MR2318407 [24] Ferrari, P. A., Martínez, S., and Picco, P., Some properties of quasistationary distributions in the birth and death chains: a dynamical approach. In Instabilities and nonequilibrium structures, III (Valparaíso, 1989), volume 64 of Math. Appl. (1991), pages 177–187. MR1177850 [25] Fukushima, M., Dirichlet forms and Markov processes, volume 23 of NorthHolland Mathematical Library. NorthHolland Publishing Co., Amsterdam, 1980. MR0569058 [26] Galton, F. and Watson, H. W., On the probability of the extinction of families. Available at http://galton.org/essays/18701879/galton1874jaigifamilyextinction.pdf, 1974. [27] Gantmacher, F. R., The theory of matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York, 1959. MR0107649 [28] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. London, Volume 115 (1825), pages 513–583. [29] Gong, G. L., Qian, M. P., and Zhao, Z. X., Killed diffusions and their conditioning. Probab. Theory Related Fields, Volume 80, Issue 1 (1988), pages 151–167. MR0970476 [30] Good, P., The limiting behavior of transient birth and death processes conditioned on survival. J. Austral. Math. Soc., Volume 8 (1968), pages 716–722. MR0240879 [31] Greenwood, M. and Irwin, J., The biostatistics of senility. Human Biology, Volume 11, Issue 1 (1939), pages 1–23. [32] Grigorescu, I. and Kang, M., Hydrodynamic limit for a FlemingViot type system. Stochastic Process. Appl., Volume 110, Issue 1 (2004), pages 111–143. MR2052139 [33] Grigorescu, I. and Kang, M., Immortal particle for a catalytic branching process. Probab. Theory Related Fields (2011), pages 1–29. 10.1007/s0044001103476. MR2925577 [34] Hart, A. G. and Pollett, P. K., New methods for determining quasistationary distributions for Markov chains. Math. Comput. Modelling, Volume 31, Issue 1012 (2000), pages 143–150. MR1768777 [35] Huillet, T., On Wright Fisher diffusion and its relatives. J. Stat. Mech.Theory E., Volume 11 (2007), pages 6–+. [36] Ikeda, N. and Watanabe, S., Stochastic differential equations and diffusion processes. NorthHolland Mathematical Library, 1989. MR1011252 [37] Joffe, A. and Métivier, M., Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. in Appl. Probab., Volume 18, Issue 1 (1986), pages 20–65. MR0827331 [38] Karatzas, I. and Shreve, S. E., Brownian motion and stochastic calculus, Volume 113 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1988. MR0917065 [39] Karlin, S. and McGregor, J. L., The differential equations of birthanddeath processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc., Volume 85 (1957), pages 489–546. MR0091566 [40] Knobloch, R. and Partzsch, L., Uniform conditional ergodicity and intrinsic ultracontractivity. Potential Analysis, Volume 33 (2010), pages 107–136. MR2658978 [41] Kolb, M. and Steinsaltz, D., Quasilimiting behavior for onedimensional diffusions with killing. To appear in Ann. Probab.. MR2917771 [42] Lambert, A., The branching process with logistic growth. Ann. Appl. Probab., Volume 15, Issue 2 (2005), pages 1506–1535. MR2134113 [43] Lambert, A., Quasistationary distributions and the continuousstate branching process conditioned to be never extinct. Electron. J. Probab., Volume 12, Issue 14 (2007), pages 420–446. MR2299923 [44] Lladser, M. and San Martín, J., Domain of attraction of the quasistationary distributions for the OrnsteinUhlenbeck process. J. Appl. Probab., Volume 37, Issue 2 (2000), pages 511–520. MR1781008 [45] Mandl, P., Spectral theory of semigroups connected with diffusion processes and its application. Czechoslovak Math. J., Volume 11, Issue 86 (1961), pages 558–569. MR0137143 [46] Martínez, S., Picco, P., and San Martín, J., Domain of attraction of quasistationary distributions for the Brownian motion with drift. Adv. in Appl. Probab., Volume 30, Issue 2 (1998), pages 385–408. MR1642845 [47] Martínez, S. and San Martín, J., Classification of killed onedimensional diffusions. Ann. Probab., Volume 32, Issue 1 (2004), pages 530–552. MR2040791 [48] Pakes, A. G. and Pollett, P. K., The supercritical birth, death and catastrophe process: limit theorems on the set of extinction. Stochastic Process. Appl., Volume 32, Issue 1 (1989), pages 161–170. MR1008915 [49] Pinsky, R. G., On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes. Ann. Probab., Volume 13, Issue 2 (1985), pages 363–378. MR0781410 [50] Pollett, P., Quasistationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf. [51] Pollett, P. K. and Stewart, D. E., An efficient procedure for computing quasistationary distributions of Markov chains with sparse transition structure. Adv. in Appl. Probab., Volume 26, Issue 1 (1994), pages 68–79. MR1260304 [52] Renault, O., Ferrière, R., and Porter, J., The quasistationary route to extinction. Private communication. [53] Revuz, D. and Yor, M., Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. SpringerVerlag, Berlin, third edition, 1999. MR1725357 [54] Seneta, E. and VereJones, D., On quasistationary distributions in discretetime Markov chains with a denumerable infinity of states. J. Appl. Probability, Volume 3 (1966), pages 403–434. MR0207047 [55] Serre, D., Matrices, volume 216 of Graduate Texts in Mathematics. SpringerVerlag, New York, 2002. Theory and applications, Translated from the 2001 French original. MR1923507 [56] Steinsaltz, D. and Evans, S. N., Markov mortality models: Implications of quasistationarity and varying initial conditions. Theo. Pop. Bio., Volume 65 (2004), 319–337. [57] Steinsaltz, D. and Evans, S. N., Quasistationary distributions for onedimensional diffusions with killing. Trans. Amer. Math. Soc., Volume 359, Issue 3 (2007), pages 1285–1324. MR2262851 [58] van Doorn, E. A., Quasistationary distributions and convergence to quasistationarity of birthdeath processes. Adv. in Appl. Probab., Volume 23, Issue 4 (1991), pages 683–700. MR1133722 [59] van Doorn, E. A., Conditions for the existence of quasistationary distributions for birthdeath processes with killing. Memorandum No. 1949, Department of Applied Mathematics, University of Twente, 2011. [60] van Doorn, E. A. and Pollett, P. K., Quasistationary distributions for reducible absorbing Markov chains in discrete time. Markov Process. Related Fields, Volume 15, Issue 2 (2009), pages 191–204. MR2538313 [61] van Doorn, E. A. and Pollett, P. K., Quasistationary distributions. Memorandum No. 1945, Department of Applied Mathematics, University of Twente, 2011. [62] VereJones, D., Some limit theorems for evanescent processes. Austral. J. Statist., Volume 11 (1969), pages 67–78. MR0263165 [63] Verhulst, P. F., Notice sur la loi que la population suit dans son accroissement. Corr. Math. et Phys., 1938. [64] Villemonais, D., Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift. Electronic Journal of Probability, Volume 16 (2011), pages 1663–1692. MR2835250 [65] Villemonais, D. Interacting particle processes and approximation of Markov processes conditioned to not be killed. ArXiv eprints, 2011. MR2835250 [66] Yaglom, A. M., Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.), Volume 56 (1947), pages 795–798. MR0022045 

Home  Current  Past volumes  About  Login  Notify  Contact  Search Probability Surveys. ISSN: 15495787 