Home  Current  Past volumes  About  Login  Notify  Contact  Search  


References[1] Ben Saad, H. and Janssen, K. (1990). Bernstein’s theorem for completely excessive measures. Nagoya Math. J. 119 133–141. MR1071904 [2] Bertoin, J. and Yor, M. (2001). On subordinators, selfsimilar Markov processes and some factorizations of the exponential variable. Elect. Comm. in Probab. 6 95–106. MR1871698 [3] Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Probability Surveys 2 191–212. MR2178044 [4] Beznea, L. (1988). Ultrapotentials and positive eigenfunctions for an absolutely continuous resolvent of kernels. Nagoya Math. J. 112 125–142. MR0974268 [5] Carmona, P., Petit, F. and Yor, M. (1994). On exponential functionals of certain Lévy processes. Stochastics and Stochastic Rep. 47 71–101. MR1787143 [6] Chaumont, L. and Yor, M. (2003). Exercises in Probability. A guided tour from measure theory to random processes, via conditioning. Cambridge University Press. MR2016344 [7] Choquet, G. and Deny, J. (1960). Sur l’équation de convolution μ = μ ∗ σ. C. R. Acad. Sc. Paris 250 799–801. MR0119041 [8] Deny, J. (1960). Sur l’équation de convolution μ = μ∗σ. In Séminaire de Théorie du Potentiel (Brelot, Choquet, Deny), 4e année: 1959/60, exposé n^{o} 5, 11p. [9] Dynkin, E.B. (1980). Minimal excessive measures and functions. Trans. Amer. Math. Soc. 2581 217–244. MR0554330 [10] Getoor, R.K. (1975). On the construction of kernels. In Séminaire de Probabilités IX, Lect. Notes Math. 465, Springer, 443–463. MR0436342 [11] Hirsch, F. and Yor, M. (2011). On the remarkable Lamperti representation of the inverse local time of a radial OrnsteinUhlenbeck process. Prépublication 324, 10/2011, Université d’Evry. [12] Itô, K. and Mc Kean, H.P. (1974). Diffusion processes and their simple paths. Springer. MR0345224 [13] Itô, M. and Suzuki, N. (1981). Completely superharmonic measures for the infinitesimal generator A of a diffusion semigroup and positive eigen elements of A. Nagoya Math. J. 83 53–106. MR0632647 [14] Kunita, H. (1969). Absolute continuity of Markov processes and generators. Nagoya Math. J. 36 1–26. MR0250387 [15] Kuznetsov, A., Pardo, J.C. and Savov, M. (2012). Distributional properties of exponential functionals of Lévy processes. Electron. J. Probab. 178 1–35. [16] Lamperti, J. (1972). Semistable Markov processes. Zeit. für Wahr. 223 205–225. MR0307358 [17] Lebedev, N.N. (1972). Special functions and their applications. Dover Publications. MR0350075 [18] Meyer, P.A. (1976). Démonstration probabiliste de certaines inégalités de LittlewoodPaley. Exposé II: l’opérateur carré du champ. In Séminaire de Probabilités X, Lect. Notes Math. 511, Springer, 142–161. MR0501380 [19] Patie, P. (2011). A refined factorization of the exponential law. Bernoulli 172 814–826. MR2787616 [20] Pardo,J.C., Patie, P. and Savov, M. (2011). A WienerHopf type factorization of the exponential functional of Lévy processes. arxiv:1105.0062v2, 2011. [21] Revuz, D. and Yor, M. (1999). Continuous martingales and Brownian motion (third edition). Springer. MR1725357 [22] Salminen, P. and Yor, M. (2005). Properties of perpetual integral functionals of Brownian motion with drift. Ann. Inst. H. Poincaré (B) Probability and Statistics 413 335–347. MR2139023 [23] Tortrat, A. (1988). Le support des lois indéfiniment divisibles dans un groupe abélien localement compact. Math. Zeitschrift 197 231–250. MR0923491 [24] Yan, J.A. (1988). A formula for densities of transition functions. In Séminaire de Probabilités XXII, Lect. Notes Math. 1321, Springer, 92–100. MR0960514 [25] Zolotarev, V.M. (1986). Onedimensional stable distributions. Amer. Math. Soc. MR0854867 

Home  Current  Past volumes  About  Login  Notify  Contact  Search Probability Surveys. ISSN: 15495787 