ALMOST NORMALITY AND MILD NORMALITY
OF THE TYCHONOFF PLANK

LUTFI N. KALANTAN

Abstract: The Tychonoff Plank is a popular example of the fact normality is not hereditary. We will show that it is mildly normal but not almost normal.

The Tychonoff plank $X = (\omega_1 + 1 \times \omega + 1) \setminus \{ (\omega_1, \omega) \}$ is a famous example of a $T_{3\frac{1}{2}}$-space which is not normal, see [1]. It is also a famous example of the fact that normality is not hereditary, see [1]. In this paper, we will show that the Tychonoff plank is mildly normal but not almost normal. We will denote an order pairs by (x, y), the set of positive integers by \mathbb{N} and the set of all real numbers by \mathbb{R}.

Definition 1. A subset A of a topological space X is called regularly closed (called also, closed domain) if $A = \overline{\text{int} A}$. Two subsets A and B in a topological space X are said to be separated if there exist two disjoint open subsets U and V such that $A \subseteq U$ and $B \subseteq V$. \[\square \]

Definition 2. A topological space X is called mildly normal (called also κ-normal) if any two disjoint regularly closed subsets A and B of X, can be separated. \[\square \]

Received: March 13, 2004; Revised: May 9, 2004.

AMS Subject Classification: 54D15, 54B10.
Keywords: κ-normal; mildly normal; almost normal; regularly closed; normal.
In [2], Shchepin introduced the notion of \(\kappa \)-normal property. He required regularity in his definition. In [3], Singal and Singal introduced the notion of mildly normal property. They did not require regularity.

Let \(\omega \) be the first infinite ordinal and \(\omega_1 \) be the first uncountable ordinal with their usual order topology. Consider the product space \(\omega + 1 \times \omega + 1 \). The Tychonoff Plank is the subspace \(X = (\omega + 1 \times \omega + 1) \setminus \{\langle \omega_1, \omega \rangle\} \). Write \(X = A \cup B \cup C \), where \(A = \{\omega_1\} \times \omega \), \(B = \omega_1 \times \{\omega\} \), and \(C = X \setminus (A \cup B) \). Let \(p_1 : \omega_1 + 1 \times \omega + 1 \to \omega_1 + 1 \) and \(p_2 : \omega_1 + 1 \times \omega + 1 \to \omega + 1 \) be the natural projections. To show that \(X \) is mildly normal, we need the following lemma:

Lemma 1. If \(H \) and \(K \) are closed disjoint unseparated subsets of \(X \), then either \((p_1(H \cap B) \) is unbounded and \(p_2(K \cap A) \) is unbounded) or \((p_1(K \cap B) \) is unbounded and \(p_2(H \cap A) \) is unbounded).

Proof: Let \(H \) and \(K \) be any closed disjoint unseparated subsets of \(X \). Suppose that the conclusion is false. This gives us that \((p_1(H \cap B) \) is bounded or \(p_2(K \cap A) \) is bounded) and \((p_1(K \cap B) \) is bounded and \(p_2(H \cap A) \) is bounded). This gives us the following four cases:

1. \(p_1(H \cap B) \) is bounded and \(p_2(H \cap A) \) is bounded.
2. \(p_1(H \cap B) \) is bounded and \(p_1(K \cap B) \) is bounded.
3. \(p_2(K \cap A) \) is bounded and \(p_2(H \cap A) \) is bounded.
4. \(p_2(K \cap A) \) is bounded and \(p_1(K \cap B) \) is bounded.

Case 1: \(p_1(H \cap B) \) is bounded and \(p_2(H \cap A) \) is bounded. Let \(\gamma \) be the least upper bound of \(p_1(H \cap B) \) and \(m \) be the least upper bound of \(p_2(H \cap A) \). In the space \(Y = \omega_1 + 1 \times \omega + 1 \supset X \) we have that \(\langle \omega_1, \omega \rangle \notin \overline{Y} \). Because if \(\langle \omega_1, \omega \rangle \in \overline{Y} \), then for each \(\alpha < \omega_1 \) and for each \(n < \omega \), we have \((\alpha, \omega_1] \times (n, \omega]\) \cap H \neq \emptyset \). Pick \(k > m \) and \(\alpha > \gamma \). Pick \(\langle \alpha_1, k_1 \rangle \in ((\alpha, \omega_1] \times (k, \omega]) \cap H \). Pick \(\langle \alpha_2, k_2 \rangle \in ((\alpha_1, \omega_1] \times (k_1, k_2]) \cap H \). Observe that \(\alpha_1 < \alpha_2 \) and \(k_1 < k_2 \). If \(l \geq 3 \), \(l < \omega \), and \(\langle \alpha_1, k_1 \rangle, \ldots, \langle \alpha_l, k_l \rangle \) are all picked such that \(\alpha_1 < \alpha_2 < \ldots < \alpha_l \) and \(k_1 < k_2 < \ldots < k_l \). Then pick \(\langle \alpha_{l+1}, k_{l+1} \rangle \in ((\alpha_l, \omega_1] \times (k_l, \omega]) \cap H \). By induction, we get a countably infinite sequence \(\{\langle \alpha_i, k_i \rangle : i \in \mathbb{N}\} \) such that \(\alpha_i < \alpha_{i+1} \) and \(k_i < k_{i+1} \) for each \(i \in \mathbb{N} \). Since \(\omega_1 \) has uncountable cofinality, then there exists a limit ordinal \(\beta < \omega_1 \) such that \(\langle \beta, \omega \rangle \) is a limit point of the sequence \(\{\langle \alpha_i, k_i \rangle : i \in \mathbb{N}\} \subseteq H \). Hence \(\langle \beta, \omega \rangle \notin \overline{Y} = H \). This means that \(\langle \beta, \omega \rangle \in H \cap B \) with \(\gamma < \beta \) which is a contradiction because \(\gamma \) is the least upper bound. Therefore, \(H \) is closed in \(Y \). Now, let \(K^* = K \cup \{\omega_1, \omega\} \). Then \(K^* \) is closed in \(Y \) which is disjoint from \(H \).
Since Y is normal, being a T_2-compact space, then H and K^* can be separated in Y by two disjoint open sets, say U and V with $H \subseteq U$ and $K^* \subseteq V$. Now, the two X-open sets U and $V \cap X$ are disjoint with $H \subseteq U$ and $K \subseteq V \cap X$. So, H and K are separated, which is a contradiction.

Case 4: $p_2(K \cap A)$ is bounded and $p_1(K \cap B)$ is bounded. This case is similar to Case 1.

Case 2: $p_1(H \cap B)$ is bounded and $p_1(K \cap B)$ is bounded. Let γ_1 be the least upper bound for $p_1(H \cap B)$ and γ_2 be the least upper bound for $p_1(K \cap B)$. For each $n \in p_2(K \cap A)$, there exists an $\alpha_n < \omega_1$ such that the open set $V_n = (\alpha_n, \omega_1] \times \{n\}$ is disjoint from H. For each $m \in p_2(H \cap A)$, there exists a $\beta_m < \omega_1$ such that the open set $U_m = (\beta_m, \omega_1] \times \{m\}$ is disjoint from K. Now, the set $\{\gamma_1, \gamma_2, \alpha_n, \beta_m : n \in p_2(K \cap A), m \in p_2(H \cap A)\}$ is a countable subset of ω_1. Pick an upper bound ξ of it. Now, observe that the set $D = \{(\alpha, k) \in H \cup K : \xi \leq \alpha < \omega_1$ and $k \notin p_2(K \cap A) \cup p_2(H \cap A)\}$ is countable. So, pick an upper bound ζ of the set $\{\alpha : (\alpha, k) \in D$ for some $k < \omega\}$ with $\xi \leq \zeta$. Let $\eta = \zeta + 1$. We have that $(\eta, \omega_1] \times \{n\} \subseteq V_n$ for each $n \in p_2(K \cap A)$ and $(\eta, \omega_1] \times \{m\} \subseteq U_m$ for each $m \in p_2(H \cap A)$. Thus $\bigcup_{n \in p_2(K \cap A)} (\eta, \omega_1] \times \{n\} = N$ is open and disjoint from H. Also, $\bigcup_{m \in p_2(H \cap A)} (\eta, \omega_1] \times \{m\} = M$ is open and disjoint from K. Now, consider the clopen (closed-and-open) subspace $Z = \eta + 1 \times \omega + 1$ of X which is normal, being T_2-compact. So, the disjoint Z-closed subsets $Z \cap H$ and $Z \cap K$ can be separated in Z by, say, G and L with $Z \cap H \subseteq G$ and $Z \cap K \subseteq L$. Now, let $U = M \cup G$ and $V = N \cup L$. Then U and V are disjoint X-open subsets with $H \subseteq U$ and $K \subseteq V$. Thus H and K are separated in X which is a contradiction.

Case 3: $p_2(K \cap A)$ is bounded and $p_2(H \cap A)$ is bounded. In this case, we must have that either $p_1(H \cap B)$ is bounded or $p_1(K \cap B)$ is bounded since closed unbounded subsets of ω_1 have nonempty intersection and H and K are disjoint. Since either $p_1(H \cap B)$ is bounded or $p_1(K \cap B)$ is bounded, then this case is reduced to either Case 1 or Case 4.

In each case we got a contradiction. Therefore, the Lemma is true.

Theorem 1. The Tychonoff Plank X is mildly normal.

Proof: Suppose that there exist two disjoint non-empty regularly closed subsets H and K of X which are unseparated. We have that int $H \neq \emptyset \neq$ int K. Since any regularly closed set is closed, then, by Lemma 1, assume, without loss of generality, that $p_1(H \cap B)$ is unbounded and $p_2(K \cap A)$ is unbounded.
Claim 1: For each \(n \in p_2(K \cap A) \) and for each \(\alpha < \omega_1 \) there exists \(\beta > \alpha \)
with \((\beta, n) \in \text{int} K \cap (\omega_1 \times \omega) \).

The statement is clear if \((\omega_1, n) \in \text{int} K \). If \((\omega_1, n) \notin \text{int} K \), then for any basic open neighborhood of \((\omega_1, n) \) which is of the form \((\alpha, \omega_1] \times \{n\} \), where \(\alpha < \omega_1 \), will meet \(\text{int} K \) because \((\omega_1, n) \in \overline{\text{int} K} \).

Claim 2: For each \(\gamma \in p_1(H \cap B) \), for each \(\zeta < \gamma \), and for each \(m < \omega \) there exist \(n > m \) and \(\beta \) with \(\zeta < \beta < \gamma \) and \((\beta, n) \in \text{int} H \cap (\omega_1 \times \omega) \).

The statement is clear if \((\gamma, \omega) \in \text{int} H \). If \((\gamma, \omega) \notin \text{int} H \), then for any basic open neighborhood of \((\gamma, \omega) \) which is of the form \((\zeta_\gamma, \gamma] \times (m, \omega) \), where \(\zeta_\gamma < \gamma \) and \(m < \omega \), will meet \(\text{int} H \) because \((\gamma, \omega) \in \overline{\text{int} H} \).

Now, pick \(n_1 \in p_2(K \cap A) \) and \(\alpha_1 < \omega_1 \). By Claim 1, pick \((\beta_1, n_1) \in \text{int} K \cap (\omega_1 \times \omega) \). Since \(p_1(H \cap B) \) is unbounded, pick \(\gamma_1 \in p_1(H \cap B) \) with \(\beta_1 < \gamma_1 \). Since \(p_2(K \cap A) \) is unbounded, pick \(m_1 \in p_2(K \cap A) \) with \(n_1 < m_1 \). Using Claim 2, pick \((\alpha_1, k_1) \in \text{int} H \cap (\omega_1 \times \omega) \cap ((\beta_1, \gamma_1] \times (m_1, \omega]) \). We continue by induction.

If for \(l \geq 2 \), \((\beta_l, n_l), ..., (\beta_l, n_l) \in \text{int} K \cap (\omega_1 \times \omega) \) and \((\alpha_1, k_1), ..., (\alpha_l, k_l) \in \text{int} H \cap (\omega_1 \times \omega) \) are all picked with \(\beta_1 < \alpha_1 < \beta_2 < \alpha_2 < ... < \beta_l < \alpha_l \) and \(n_1 < k_1 < n_2 < k_2 < ... < n_l < k_l \). Then, since \(p_2(K \cap A) \) is unbounded, pick \(n_{l+1} \in p_2(K \cap A) \). Pick \((\beta_{l+1}, n_{l+1}) \in \text{int} K \cap (\omega_1 \times \omega) \cap ((\alpha_l, \omega_1] \times \{n_{l+1}\}) \). Since \(p_1(H \cap B) \) is unbounded, pick \(\gamma_{l+1} \in p_1(H \cap B) \) such that \(\beta_{l+1} < \alpha_{l+1} \) and \(m_{l+1} \) \(n_{l+1} < m_{l+1} \). Pick \((\alpha_{l+1}, k_{l+1}) \in \text{int} H \cap (\omega_1 \times \omega) \cap ((\beta_{l+1}, \gamma_{l+1}] \times (m_{l+1}, \omega]) \). So, by induction, we got two sequences \(\{\beta_i, n_i\} \in \text{int} K \cap (\omega_1 \times \omega) : i \in \mathbb{N} \} \) and \(\{\alpha_i, k_i\} \in \text{int} H \cap (\omega_1 \times \omega) : i \in \mathbb{N} \} \) with \(\beta_i < \alpha_i < \beta_{i+1} < \alpha_{i+1} \) for each \(i \in \mathbb{N} \) and \(n_i < k_i < n_{i+1} < k_{i+1} \) for each \(i \in \mathbb{N} \). Now, the set \(\{\beta_i, \alpha_i : i \in \mathbb{N} \} \) is a countably infinite subset of \(\omega_1 \). Let \(\eta \) be its least upper bound. By our construction, any basic open neighborhood of \(\langle \eta, \omega \rangle \) will meet \(\text{int} H \) and \(\text{int} K \).

Thus \(\langle \eta, \omega \rangle \in \overline{\text{int} H} = H \) and \(\langle \eta, \omega \rangle \in \overline{\text{int} K} = K \). Therefore, \(H \cap K \neq \emptyset \), which is a contradiction. Thus there are no unseparated disjoint regularly closed sets. Thus \(X \) is mildly normal. \(\Box \)

Definition 3 (Singal and Singal, [4]). A topological space \(X \) is called **almost normal** if any two disjoint closed subsets \(A \) and \(B \) of \(X \) one of which is regularly closed can be separated. \(\Box \)

It is clear from the definition that any almost normal space is mildly normal. In [4], Singal and Singal gave a non-regular space which is mildly normal but not almost normal. The next theorem will give a \(T_{\frac{3}{2}} \)-space which is mildly normal but not almost normal.
Theorem 2. The Tychonoff Plank X is not almost normal.

Proof: Let $O = \{2n + 1: n < \omega\}$ and $E = \omega \setminus O$. Let

$$K = \{\langle \omega_1, n\rangle: n \in O\}$$

and

$$H = \left(\bigcup_{m \in E} \{\langle \alpha, m\rangle: \alpha \leq \omega_1, m \in E\} \right) \cup B.$$

Now, $\text{int} H = \bigcup_{m \in E} \{\langle \alpha, m\rangle: \alpha \leq \omega_1, m \in E\}$, and hence $\text{int} H = \bigcup_{m \in E} \{\langle \alpha, m\rangle: \alpha \leq \omega_1, m \in E\} = (\bigcup_{m \in E} \{\langle \alpha, m\rangle: \alpha \leq \omega_1, m \in E\}) \cup B = H$. Thus H is regularly closed. It is clear that K is closed and disjoint from H. Since $K \subset A$ is infinite and $B \subset H$, then H and K cannot be separated. Thus X is not almost normal.

REFERENCES

Lutfi N. Kalantan,
King Abdulaziz University, Department of Mathematics,
P.O. Box 114641, Jeddah 21381 – SAUDI ARABIA
E-mail: lkalantan@hotmail.com