CONVERGENCE OF APPROXIMATION PROCESSES
ON CONVEX CONES

M.S.M. ROVERSI, A.O. CHIACCHIO and M.L.B. QUEIROZ

Abstract: The purpose of this paper is to establish convergence results for sequences of convex conic operators on $C(X; \mathcal{C})$ which are regular, i.e., sequences $\{T_n\}_{n \geq 1}$ such that for some positive linear operator S_n on $C(X; \mathbb{R})$ we have $T_n(g \otimes K) = S_n(g) \otimes K$, for every continuous real valued function g and every element K of the convex cone \mathcal{C}.

1 – Introduction

We start by reviewing some of the properties of convex cones.

Definition 1. An (abstract) convex cone is a non-empty set \mathcal{C} such that to every pair of elements, K and L, of \mathcal{C}, there corresponds an element $K + L$, called the sum of K and L, in such a way that addition is commutative and associative, and there exists in \mathcal{C} a unique element 0, called the vertex of \mathcal{C}, such that $K + 0 = K$, for every $K \in \mathcal{C}$. Moreover, to every pair, λ and K, where $\lambda \geq 0$ is a non-negative real number and $K \in \mathcal{C}$, there corresponds an element λK, called the product of λ and K, in such a way that multiplication is associative: $\lambda(\mu K) = (\lambda \mu) K$, $1.K = K$ and $0.K = 0$ for every $K \in \mathcal{C}$; and the distributive laws are verified: $\lambda(K + L) = \lambda K + \lambda L$, $(\lambda + \mu) K = \lambda K + \mu K$, for every $K, L \in \mathcal{C}$ and $\lambda \geq 0$, $\mu \geq 0$.

Definition 2. Let \mathcal{C} be an (abstract) convex cone and let d be a metric on \mathcal{C}. We say that the pair (\mathcal{C}, d) is a metric convex cone if the following properties are valid:

Received: September 16, 1995.
1991 Mathematics Subject Classification: 41A36, 41A65.
Keywords: Convex cone, Regular operators, Approximation.
Let \((\mathcal{C}, d)\) be a metric convex cone. Then:

\[d(\lambda K, \mu L) \leq |\lambda - \mu| d(K, 0) + \mu d(K, L), \]

for every \(K\) and \(L\) in \(\mathcal{C}\) and every \(\lambda \geq 0\) and \(\mu \geq 0\).

Definition 3. A non-empty subset \(\mathcal{K}\) of an (abstract) convex cone \(\mathcal{C}\) is called a **convex subcone** if \(K, L \in \mathcal{K}\) and \(\lambda \geq 0\) imply \(K + L \in \mathcal{K}\) and \(\lambda K \in \mathcal{K}\). When equipped with the induced operations, a convex subcone \(\mathcal{K} \subset \mathcal{C}\) becomes a convex cone.

Example 1: If \(E\) is a vector space over the reals then the set \(\mathcal{C} = \text{Conv}(E)\) of all convex non-empty subsets of \(E\) is a convex cone with the operations defined by: if \(K, L \in \text{Conv}(E)\) and \(\lambda \geq 0\)

\[K + L = \{u + v; \ u \in K, \ v \in L\}, \]

\[\lambda K = \{\lambda u; \ u \in K\}, \]

\[0 = \{\theta\}, \] where \(\theta\) is the origin of \(E\).

When \(E\) is a normed vector space, the set \(\mathcal{K}\) consisting of those elements of \(\text{Conv}(E)\) that are bounded sets is a convex subcone of \(\text{Conv}(E)\).

Definition 4. Let \(\mathcal{C}_1\) and \(\mathcal{C}_2\) be two convex cones. An operator \(T: \mathcal{C}_1 \to \mathcal{C}_2\) is called a **convex conic operator**, if

\[T(F + G) = T(F) + T(G) \]

\[T(\lambda F) = \lambda T(F) \]

for every pair \(F, G \in \mathcal{C}_1\) and every \(\lambda \geq 0\).

2 – Spaces of continuous functions

Let \(X\) be a compact Hausdorff space. Let \((\mathcal{C}, d)\) be a metric convex cone. We denote by \(C(X; \mathcal{C})\) the convex cone consisting of all continuous mappings \(F: X \to \mathcal{C}\). In \(C(X; \mathcal{C})\) we consider the topology of uniform convergence over \(X\),
determined by the metric defined by

\[d(F, G) = \sup \{d(F(x), G(x)) : x \in X\} \]

for every pair \(F, G \) of elements of \(C(X; C) \). Hence \(F_n \to F \) in \(C(X; C) \) if, and only if, \(d(F_n, F) \to 0 \).

When \((C, d)\) is \(\mathbb{R} \) equipped with the usual distance \(d(x, y) = |x - y| \), then \(C(X, C) \) is the classical Banach space \(C(X) \) of all continuous real-valued functions \(f: X \to \mathbb{R} \), equipped with the sup-norm \(\|f\| = \sup\{|f(x)| : x \in X\} \).

Assume that \((X, d)\) is a metric compact space. We say that \(F: X \to C \) is a \textit{Lipschitz function} if there exists a positive constant \(M_F \) such that

\[d(F(x), F(y)) \leq M_F \tilde{d}(x, y) \]

for all \(x, y \in X \). The subset of \(C(X; C) \) of such functions is denoted by \(\text{Lip}(X; C) \). When \((C, d)\) is \(\mathbb{R} \) equipped with usual distance \(d(x, y) = |x - y| \) we denote \(\text{Lip}(X; \mathbb{R}) = \text{Lip}(X) \) and \(\text{Lip}^+(X) = \{f \in \text{Lip}(X) : f \geq 0\} \). Notice that \(\text{Lip}(X; C) \) is a convex subcone of \(C(X; C) \).

For each \(K \in C \), we denote by \(K^* \) the element of \(C(X; C) \) defined by \(K^*(t) = K \), for all \(t \in X \).

For each \(f \in C^+(X) \) and \(K \in C \) we denote by \(f \otimes K \) the function of \(C(X; C) \) defined by \((f \otimes K)(x) = f(x).K \), for all \(x \in X \). The convex subcone of \(C(X; C) \) generated by the functions \(f \otimes K \), where \(f \in \text{Lip}^+(X) \) and \(K \in C \), is denoted by \(\text{Lip}^+(X) \otimes C \).

Definition 5. Let \(K \) be a convex subcone of a convex cone \(C \). Let \(T: C(X; C) \to C(X; C) \) be a convex conic operator. We say that \(T \) is \textit{regular over} \(K \) if there exists a linear operator \(\tilde{T}: C(X; \mathbb{R}) \to C(X; \mathbb{R}) \) such that

\[T(f \otimes K) = \tilde{T}(f) \otimes K \]

for all \(f \in C^+(X) \) and \(K \in K \).

When \(K = C \) and \(T \) is regular over \(K \), we say simply that \(T \) is \textit{regular}.

Definition 6. Let \(T: C(X; C) \to C(X; C) \) be a convex conic operator. We say that \(T \) is \textit{monotonically regular} if there exists a monotone linear operator \(\tilde{T}: C(X; \mathbb{R}) \to C(X; \mathbb{R}) \) such that

\[T(f \otimes K) = \tilde{T}(f) \otimes K \]

for all \(f \in C^+(X) \) and \(K \in C \).
We recall that an operator S on $C(X; \mathbb{R})$ is called monotone if $S(f) \leq S(g)$, whenever $f \leq g$. For linear operators, to be monotone is equivalent to be positive, i.e., $S(f) \geq 0$, for all $f \geq 0$.

Remark 1. Notice that if T is regular and \tilde{T} preserves the constant functions, i.e., $\tilde{T}(e_0) = e_0$, where e_0 denotes the real function $e_0(t) = 1$, for all $t \in X$, then T also preserves the constant functions, since $T(K^*) = T(e_0 \otimes K) = \tilde{T}(e_0) \otimes K = e_0 \otimes K = K^*$, for every $K \in \mathcal{C}$.

Definition 7. Let T be a regular operator on the convex cone $C(X; \mathcal{C})$. Define

$$\alpha(x) = \left(\tilde{T}(\tilde{d}_{x}), x\right)$$

for all $x \in X$, where \tilde{d}_{x} is defined by $\tilde{d}_{x}(y) = d(x, y)$, for all $y \in X$.

Lemma 1. Let (X, \tilde{d}) be a metric compact space and (\mathcal{C}, d) be a metric convex cone. Then:

a) If $F \in \text{Lip}^+(X) \otimes \mathcal{C}$, then $F \in \text{Lip}(X; \mathcal{C})$.

b) If $g \in \text{Lip}^+(X)$ and $F \in \text{Lip}^+(X) \otimes \mathcal{C}$, then the function $x \mapsto g(x)F(x)$, $x \in X$, belongs to $\text{Lip}^+(X) \otimes \mathcal{C}$.

Proof:

a) Let $F \in \text{Lip}^+(X) \otimes \mathcal{C}$ be given. There exist $g_i \in \text{Lip}^+(X)$ and $K_i \in \mathcal{C}$, for $i = 1, \ldots, m$, such that $F = \sum_{i=1}^{m} g_i \otimes K_i$. Let $M_i > 0$ be the Lipschitz constant for g_i, $i = 1, \ldots, m$. Then

$$d(F(x), F(y)) = d\left(\sum_{i=1}^{m} g_i(x) K_i, \sum_{i=1}^{m} g_i(y) K_i\right) \leq \sum_{i=1}^{m} d\left(g_i(x) K_i, g_i(y) K_i\right) \leq \sum_{i=1}^{m} |g_i(x) - g_i(y)| \cdot d(K_i, 0) \leq \sum_{i=1}^{m} M_i \tilde{d}(x, y) d(K_i, 0) = \left(\sum_{i=1}^{m} M_i d(K_i, 0)\right) \tilde{d}(x, y)$$

for all $x, y \in X$. Hence $F \in \text{Lip}(X; \mathcal{C})$.

b) Let $g \in \text{Lip}^+(X)$ and $F \in \text{Lip}^+(X) \otimes \mathcal{C}$ be given. Put $\|F\| = \sup\{d(F(x), 0); x \in X\}$. Since $F \in C(X; \mathcal{C})$ it follows that $\|F\| < \infty$. Let M_g and M_F be the positive constants such that

$$|g(x) - g(y)| \leq M_g \tilde{d}(x, y) \quad \text{and} \quad d(F(x), F(y)) \leq M_F \tilde{d}(x, y),$$
for all \(x, y \in X\). Then
\[
\begin{align*}
d\left(g(x) F(x), g(y) F(y)\right) & \leq |g(x) - g(y)| d(F(x), 0) + g(y) d(F(x), F(y)) \\
& \leq M_g \tilde{d}(x, y) \|F\| + \|g\| M_F \tilde{d}(x, y) \\
& = \left(\|F\| M_g + \|g\| M_F\right) \tilde{d}(x, y)
\end{align*}
\]
for all \(x, y \in X\). Hence \(gF \in \text{Lip}(X; C)\).

Now, if \(g \in \text{Lip}^+(X)\) and \(F = \sum_{i=1}^{m} g_i \otimes K_i\), where \(g_i \in \text{Lip}^+(X)\) and \(K_i \in C\), then \(gF = \sum_{i=1}^{m} h_i \otimes K_i\) where \(h_i = g \cdot g_i \in \text{Lip}^+(X)\). It follows that \(gF\) belongs to \(\text{Lip}^+(X) \otimes C\).

Lemma 2. Let \((X, \tilde{d})\) and \((C, d)\) be as in Lemma 1. Then \(\text{Lip}^+(X) \otimes C\) is dense in \(C(X; C)\). Consequently, \(\text{Lip}(X; C)\) is dense in \(C(X; C)\).

Proof: Let \(x, y \in X\), \(x \neq y\) be given. Let \(g : X \to \mathbb{R}\) be defined by \(g(z) = \tilde{d}(x, z)\), for all \(z \in X\). Since \(|g(z) - g(t)| = |\tilde{d}(x, z) - \tilde{d}(x, t)| \leq \tilde{d}(z, t)\), for all \(z, t \in X\), it follows that \(g \in \text{Lip}^+(X)\). Therefore \(h = g/\|g\|\) belongs to \(\text{Lip}(X; [0, 1])\). Moreover, \(h(y) > 0 = h(x)\), i.e., \(h\) separates \(x\) and \(y\). By Lemma 1, if \(F, G \in \text{Lip}^+(X) \otimes C\) then \(hF + (1 - h) G\) belongs to \(\text{Lip}^+(X) \otimes C\). Since \(\text{Lip}^+(X) \otimes C\) contains the constant functions, the result follows from Corollary 3, Prolla [3].

Lemma 3 (Andrica and Mustata [1]). Let \((X, \tilde{d})\) be a metric compact space and let \(S : C(X; \mathbb{R}) \to C(X; \mathbb{R})\) be a positive linear operator. If \(f \in \text{Lip}(X)\) then there exists a positive constant \(M_f\) such that
\[
|(Sf, x) - f(x) (Se_0, x)| \leq M_f \alpha(x)
\]
for all \(x \in X\).

Proof: Let \(f \in \text{Lip}(X)\) and let \(M_f > 0\) be a Lipschitz constant for \(f\), i.e.,
\[
|f(x) - f(y)| \leq M_f \tilde{d}(x, y)
\]
for all \(x, y \in X\). It follows that
\[
-M_f \tilde{d}(x, \cdot) \leq f(\cdot) - f(x) e_0 \leq M_f \tilde{d}(x, \cdot)
\]
for all \(x \in X\). Since \(S\) is linear and positive we have
\[
-M_f (S(\tilde{d}_x), x) \leq (Sf, x) - f(x) (Se_0, x) \leq M_f (S(\tilde{d}_x), x)
\]
for all $x \in X$. Therefore

$$\left| (Sf, x) - f(x) (Se_0, x) \right| \leq M_f (S(\tilde{d}_x), x)$$

for all $x \in X$. \hfill \blacksquare

Corollary 1. Let (X, \tilde{d}) and S be as in Lemma 3. Assume that $Se_0 = e_0$. If $f \in \text{Lip}(X)$ then there exists a positive constant M_f such that

$$\left| (Sf, x) - f(x) \right| \leq M_f \alpha(x)$$

for all $x \in X$.

Proof: It follows immediately from Lemma 3 since $(Se_0, x) = 1$, for all $x \in X$. \hfill \blacksquare

Remark 2. A positive linear operator S on $C(X; \mathbb{R})$ such that $S\alpha = \alpha_0$, i.e., S preserves the constant functions, is called a Markov operator on $C(X; \mathbb{R})$. Andrica and Mustata [1] proved Lemma 3 assuming that S is a Markov operator.

Proposition 1. Let (X, \tilde{d}) be a metric compact space and (C, d) be a metric convex cone. Let T be a monotonically regular operator on $C(X; C)$ and let $F \in \text{Lip}^+(X) \otimes C$ be given. There exist positive constants M_F and A_F such that

$$d(TF, x), F(x) \leq M_F \alpha(x) + A_F |(\tilde{T}e_0, x) - 1|$$

for all $x \in X$.

Proof: Let $F = \sum_{i=1}^m g_i \otimes K_i$ be given, where $g_i \in \text{Lip}^+(X)$ and $K_i \in C$, for $i = 1, \ldots, m$. Since T is convex conic and regular, we have

$$(TF, x) = \left(\sum_{i=1}^m T(g_i \otimes K_i), x \right) = \sum_{i=1}^m (\tilde{T}(g_i), x) K_i$$

for all $x \in X$.

For each $i = 1, \ldots, m$, by Lemma 3, there exists a constant $M_i > 0$ such that

$$\left| (\tilde{T}(g_i), x) - g_i(x) (\tilde{T}e_0, x) \right| \leq M_i \alpha(x)$$

for all $x \in X$. Let M_F and A_F be the positive constants defined by

$$M_F = \sum_{i=1}^m M_i d(K_i, 0) \quad \text{and} \quad A_F = \sum_{i=1}^m \|g_i\| d(K_i, 0).$$
Then,
\[d\left((TF, x), F(x)\right) \leq \sum_{i=1}^{m} d\left((\hat{T}(g_i), x)K_i, g_i(x)K_i\right) \leq \sum_{i=1}^{m} |(\hat{T}(g_i), x) - g_i(x)| d(K_i, 0) \leq \sum_{i=1}^{m} \left[M_i \alpha(x) + \|g_i\| \cdot |(\hat{T}\epsilon_0, x) - 1| \right] d(K_i, 0) \leq M_F \alpha(x) + A_F |(\hat{T}\epsilon_0, x) - 1| \]
for all \(x \in X \).

Corollary 2. Let \((X, \tilde{d}), (\mathcal{C}, d)\) and \(T\) be as in Proposition 1. Assume that \(\hat{T}\) preserves the constant functions. If \(F \in \text{Lip}^+(x) \otimes \mathcal{C}\) then there exists a positive constant \(M_F\) such that
\[d\left((TF, x), F(x)\right) \leq M_F \alpha(x) \]
for all \(x \in X \).

Proof: The result follows from Proposition 1 since \(\hat{T}(\epsilon_0) = \epsilon_0\).

Definition 8. Let \(\{T_n\}_{n \geq 1}\) be a sequence of operators on \(C(X; \mathcal{C})\). We say that \(\{T_n\}_{n \geq 1}\) is **uniformly equicontinuous** if for each \(\varepsilon > 0\) there exists \(\delta > 0\) such that \(d(F, G) < \delta\) implies \(d(T_n F, T_n G) < \varepsilon\), for all \(n = 1, 2, 3, \ldots\).

Let \(\{T_n\}_{n \geq 1}\) be a sequence of regular operators on \(C(X; \mathcal{C})\). For each \(n \geq 1\) we denote by \(\alpha_n\) the function defined by
\[\alpha_n(x) = (\hat{T}_n(\tilde{d}_x), x) \]
for all \(x \in X\).

Theorem 1. Let \((X, \tilde{d})\) be a metric compact space and \((\mathcal{C}, d)\) be a metric convex cone. Let \(\{T_n\}_{n \geq 1}\) be a sequence of monotonically regular operators on \(C(X; \mathcal{C})\). Assume that \(\{T_n\}_{n \geq 1}\) is uniformly equicontinuous. If \(\hat{T}_n \epsilon_0 \to \epsilon_0\) and \(\{\alpha_n(x)\}_{n \geq 1}\) converges to zero, uniformly in \(x \in X\), then \(T_n F \to F\), for every \(F \in \text{Lip}^+(X) \otimes \mathcal{C}\).

Proof: Let \(G \in \text{Lip}^+(X) \otimes \mathcal{C}\) be given. By Proposition 1, there exist positive constants \(M_G\) and \(A_G\) such that, for each \(n \geq 1\),
\[d\left((T_n G, x), G(x)\right) \leq M_G \alpha_n(x) + A_G |(\hat{T}_n \epsilon_0, x) - 1| \]
for all \(x \in X\). Since \(\alpha_n(x) \to 0\), uniformly in \(x \in X\) and \(\hat{T}_n \epsilon_0 \to \epsilon_0\) it follows that \(d(T_n G, G) \to 0\). Hence \(T_n G \to G\), for each \(G\) in \(\text{Lip}^+(X) \otimes \mathcal{C}\).
Let $F \in C(X;C)$ and $\varepsilon > 0$ be given. By the uniform equicontinuity of the sequence $\{T_n\}_{n \geq 1}$, there is some $\delta > 0$, which we may assume to verify $\delta < \varepsilon/3$, such that $d(F, H) < \delta$ implies $d(T_nF, T_nH) < \varepsilon/3$, for all $n \geq 1$. By Lemma 2, there exists G in $\text{Lip}^+(X) \otimes C$ such that $d(F, G) < \delta$. Since $T_nG \to G$ as proved above, there is n_0 such that $n \geq n_0$ implies $d(T_nG, G) < \varepsilon/3$. It follows that, for $n \geq n_0$

$$
\begin{align*}
\left| d(\left(T_n F, x \right), F(x)) - d \left(\left(T_n G, x \right), G(x) \right) \right| & \leq \left(d(T_n F, T_n G) + d(T_n G, G) + d(G, F) \right) < \varepsilon \\
& \leq \frac{\varepsilon}{3} \quad \text{for all } x \in X.
\end{align*}
$$

for all $x \in X$. Hence $T_n F \to F$.

Remark 3. If each \widehat{T}_n preserves the constant functions, then the proof of Theorem 1 implies that

$$
d(T_n F, F) \leq M_F \|\alpha_n\|
$$

for all $n \geq 1$ and all $F \in \text{Lip}^+(X) \otimes C$, where $\|\alpha_n\| = \sup\{|\alpha_n(x)|; x \in X\}$.

If we define $\beta_n(x) = (\widehat{T}_n(\widehat{\partial}_{x}^2) x)$, for all $x \in X$, then we have that $\|\alpha_n\| \leq \frac{\|\beta_n\|}{\varepsilon}$, for all $n \in \mathbb{N}$, and the following result holds:

Corollary 3. Let $\{T_n\}_{n \geq 1}$ be as in Theorem 1. Assume that each \widehat{T}_n preserves the constant functions. If $\{\beta_n(x)\}_{n \geq 1}$ converges to zero, uniformly in $x \in X$, then $T_n F \to F$, for every $F \in C(X;C)$. Furthermore, if $F \in \text{Lip}^+(X) \otimes C$ then there exists a constant $M_F > 0$ such that

$$
d(T_n F, F) \leq M_F \|\beta_n\|^{\frac{1}{2}}
$$

for all $n \geq 1$.

Proof: Apply Theorem 1 and Remark 3.

Example 2: Let J be a finite set, and for each $k \in J$, let $t_k \in X$ and $\psi_k \in C^+(X)$ be given. The convex conic operator T defined on $C(X;C)$ by

$$
(TF, x) = \sum_{k \in J} \psi_k(x) F(t_k)
$$

for all $F \in C(X;C)$ and $x \in X$ is called an operator of interpolation type. If $F = f \otimes K$, where $f \in C^+(X)$ and $K \in C$, then

$$
(TF, x) = \sum_{k \in J} \psi_k(x) [f(t_k)K] = \left[\sum_{k \in J} \psi_k(x) f(t_k) \right] K.
$$
Hence, T is regular and $T(f \otimes K) = \hat{T}(f) \otimes K$ where, for each $f \in C(X; \mathbb{R})$,

$$(\hat{T}f, x) = \sum_{k \in J} \psi_k(x) f(t_k).$$

Let us assume that, for every $x \in X$,

$$\sum_{k \in J} \psi_k(x) = 1.$$

It follows that $\hat{T}e_0 = e_0$. The operators of Bernstein and of Hermite–Fejér type are examples of operators satisfying such condition.

Remark 4. If (C, d) is a convex cone and T is a regular operator on $C(X; C)$ then $TK^* = T(e_0 \otimes K) = \hat{T}(e_0) \otimes K$, for every $K \in C$, and we have

$$d\left((TK^*, x), K^*(x)\right) = d\left((\hat{T}e_0, x)K, e_0(x)K\right) \leq |(\hat{T}e_0, x) - 1| d(K, 0)$$

for all $x \in X$. It follows that if $\{T_n\}_{n \geq 1}$ is a sequence of regular operators on $C(X; C)$ such that $\hat{T}_n e_0 \to e_0$, then $T_n K^* \to K^*$, for every $K \in C$.

Lemma 4. Let (X, \hat{d}) be a metric compact space and (C, d) be a convex cone. Let $\{T_n\}_{n \geq 1}$ be a sequence of regular convex conic operator on $C(X; C)$. Assume that $\hat{T}_n e_0 \to e_0$. If $F \in C(X; C)$ then $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$.

Proof: Let $F \in C(X; C)$ and $\varepsilon > 0$ be given. Since $\hat{T}_n e_0 \to e_0$ there is n_0 such that $n \geq n_0$ implies

$$\left|(\hat{T}_n(e_0), x) - 1\right| < \frac{\varepsilon}{2 \|F\|}$$

for all $x \in X$, where $\|F\| = \sup\{d(F(x), 0); x \in X\}$. It follows that, for $n \geq n_0$

$$d\left((T_n[F(x)]^*, x), f(x)\right) \leq \left|(\hat{T}_n(e_0), x) - 1\right| d(F(x), 0) \leq \left(\frac{\varepsilon}{2 \|F\|}\right) \cdot \|F\| < \varepsilon$$

for all $x \in X$. Therefore, $(T_n[F(x)]^*, x) \to F(x)$, uniformly in $x \in X$. \qed
3 – Hausdorff convex cones

Definition 9. An ordered convex cone is a pair \((C, \preceq)\), where \(C\) is an (abstract) convex cone and \(\preceq\) is an ordering of its elements, i.e., \(\preceq\) is a reflexive, transitive and antisymmetric relation on \(C\), in such a way that

a) \(K \leq L\) implies \(K + M \leq L + M\), for every \(M \in C\),

b) \(K \leq L, \lambda \geq 0\) implies \(\lambda K \leq \lambda L\),

c) \(\lambda \leq \mu\) implies \(\lambda K \leq \mu K\), for every \(K \geq 0\).

Definition 10. Let \((C, \preceq)\) be an ordered convex cone and let \(d_H\) be a semi-metric on \(C\). We say that \(d_H\) is a Hausdorff semi-metric on \(C\) if there exists an element \(B \geq 0\) on \(C\) such that:

a) For every pair \(K, L \in C\) and \(\lambda \geq 0\), the following is true: \(d_H(K, L) \leq \lambda\) if, and only if, \(K \leq L + \lambda B\) and \(L \leq K + \lambda B\),

b) \(\lambda B \leq \mu B\) implies \(\lambda \leq \mu\).

If \(d_H\) is a Hausdorff semi-metric on \(C\), we say that \((C, d_H)\) is a Hausdorff convex cone.

Example 3: If \(C = \mathbb{R}\) with the usual operations and ordering, the usual distance \(d_H(x, y) = |x - y|\) is a Hausdorff metric on \(\mathbb{R}\), with \(B = 1\).

Example 4: Let \(C\) be the convex subcone of \(\text{Conv}(E)\) of all elements of \(\text{Conv}(E)\) that are bounded sets and let \(B\) be the closed unit ball of \(E\). Define on \(C\) the usual Hausdorff semi-metric \(d_H\) by setting

\[
d_H(K, L) = \inf \left\{ \lambda > 0; \ K \subset L + \lambda B, \ L \subset K + \lambda B \right\}
\]

for every pair \(K, L \in C\). Then \((C, d_H)\) is a Hausdorff convex cone.

Let \((X, \tilde{d})\) be a metric compact space and \((C, d_H)\) be a Hausdorff convex cone. In \(C(X; C)\) we consider the topology determined by the metric defined by

\[
d(F, G) = \sup \left\{ d_H(F(x), G(x)); \ x \in X \right\}
\]

for every pair \(F, G\) in \(C(X; C)\).

Remark 5. If \((C, d_H)\) is a Hausdorff convex cone and \(\{T_n\}_{n \geq 1}\) is a sequence of regular operators on \(C(X; C)\) then \(T_n B^* \rightarrow B^*\) implies \(T_n e_0 \rightarrow e_0\). Indeed, let
\(\varepsilon > 0 \) be given. Since \(B^* = e_0 \otimes B \) and \(T_n(e_0 \otimes B) \to e_0 \otimes B \), it follows that there is \(n_0 \) such that \(n \geq n_0 \) implies
\[
d_H\left((\tilde{T}_n(e_0), x) B, e_0(x) B \right) < \varepsilon
\]
for all \(x \in X \). By the definition of \(d_H \) we have
\[
\left(\tilde{T}_n(e_0), x \right) B \leq B + \varepsilon B = (1 + \varepsilon) B
\]
and
\[
B \leq (\tilde{T}_n(e_0), x) B + \varepsilon B
\]
for all \(x \in X \). By condition b) of Definition (10) we have \((\tilde{T}_n(e_0), x) < 1 + \varepsilon \) and \(1 - \varepsilon < (\tilde{T}_n(e_0), x) \), for all \(x \in X \). Hence \(|(\tilde{T}_n(e_0), x) - 1| < \varepsilon \), for all \(x \in X \) and so \(\tilde{T}_n e_0 \to e_0 \).

We recall that an operator \(T \) on \(C(X; \mathbb{C}) \) is called \emph{monotone}, if \(F \leq G \) implies \(TF \leq TG \) for every pair \(F, G \) in \(C(X; \mathbb{C}) \).

Remark 6. If \((C, d_H) \) is a Hausdorff convex cone and \(T \) is a regular operator on \(C(X; \mathbb{C}) \) that is monotone then \(\tilde{T} \) is also monotone. Indeed, for \(f, g \in C(X; \mathbb{R}) \) such that \(f \leq g \) we have \(f \otimes B \leq g \otimes B \). It follows that \(T(f \otimes B) \leq T(g \otimes B) \), and since \(T \) is regular, we get \((\tilde{T}(f), x)B \leq (\tilde{T}(g), x)B \), for all \(x \in X \). Therefore \(\tilde{T}f \leq \tilde{T}g \).

Theorem 2. Let \((X, \tilde{d}) \) be a metric compact space and \((C, d_H) \) be a Hausdorff convex cone. Let \(\{T_n\}_{n \geq 1} \) be a sequence of regular continuous operators on \(C(X; \mathbb{C}) \). Assume that each \(T_n \) is monotone and \(T_n B^* \to B^* \). If \(\{a_n(x)\}_{n \geq 1} \) converges to zero, uniformly in \(x \in X \), then \(T_n F \to F \), for every \(F \in C(X; \mathbb{C}) \).

Proof: By Theorem 1 it suffices to show that the sequence \(\{T_n\}_{n \geq 1} \) is uniformly equicontinuous. Let \(\varepsilon > 0 \) be given. Choose \(\delta_0 > 0 \) such that \(\delta_0(1 + \delta_0) < \varepsilon \). Since \(T_n B^* \to B^* \), there is \(n_0 \) so that \(n > n_0 \) implies \(d_H((T_n B, x), B) < \delta_0 \), for all \(x \in X \). It follows from the definition of \(d_H \) that
\[
(T_n B^*, x) \leq B + \delta_0 B = (1 + \delta_0) B
\]
and
\[
B \leq (T_n B^*, x) + \delta_0 B
\]
for all \(x \in X \), and \(n > n_0 \).
Let $F, G \in C(X; \mathcal{C})$ be such that $d(F, G) < \delta_0$. We claim that $d(T_n F, T_n G) < \varepsilon$, for all $n > n_0$. Indeed, since $d_H(F(x), G(x)) < \delta_0$, for all $x \in X$, it follows that $F \leq G + \delta_0 B^*$ and $G \leq F + \delta_0 B^*$.

Since each T_n is convex conic and monotone, we have, for each $n \geq 1$, $T_n F \leq T_n G + \delta_0 T_n B^*$ and $T_n G \leq T_n F + \delta_0 T_n B^*$. Therefore, for each $n \geq 1$, $(T_n F, x) \leq (T_n G, x) + \delta_0 (T_n B^*, x)$, for all $x \in X$. It follows that, for $n > n_0$

$$
(T_n F, x) \leq (T_n G, x) + \delta_0 (1 + \delta_0) B < (T_n G, x) + \varepsilon B
$$

for all $x \in X$. Similarly, for $n > n_0$

$$
(T_n G, x) < (T_n F, x) + \varepsilon B
$$

for all $x \in X$. Hence, for all $n > n_0$

$$
d_H((T_n F, x), (T_n G, x)) < \varepsilon
$$

for all $x \in X$. It follows that, for all $n > n_0$

$$
d(T_n F, T_n G) < \varepsilon.
$$

On the other hand, since each T_n is continuous, there exist $\delta_1, \ldots, \delta_{n_0}$ such that $d(F, G) < \delta_k$ implies $d(T_k F, T_k G) < \varepsilon$, for $k = 1, 2, \ldots, n_0$. Let $\delta = \min\{\delta_0, \delta_1, \ldots, \delta_{n_0}\}$. Clearly $d(F, G) < \delta$ implies $d(T_n F, T_n G) < \varepsilon$, for all $n = 1, 2, 3, \ldots$.

Corollary 4. Let (X, \tilde{d}), (\mathcal{C}, d_H) and $\{T_n\}_{n \geq 1}$ be as in Theorem 2. Assume that T_n preserves the constant functions. If $\{\beta_n(x)\}_{n \geq 1}$ converges to zero, uniformly in $x \in X$, then $T_n F \rightharpoonup F$, for every $F \in C(X; \mathcal{C})$. Furthermore, if $F \in \text{Lip}^+(X) \otimes \mathcal{C}$ then there exists a constant $M_F > 0$ such that

$$
d(T_n F, F) \leq M_F \|\beta_n\|^{\frac{1}{2}}
$$

for all $n = 1, 2, 3, \ldots$, where $\beta_n(x) = (\tilde{T}_n(\tilde{d}_x)^2, x)$, for all $x \in X$.

Let us recall that the modulus of continuity of $F \in C(X; \mathcal{C})$ is defined as

$$
w(F, \delta) = \sup\{d(F(x), F(t)); x, t \in X, \tilde{d}(x, t) \leq \delta\}
$$

for every $\delta > 0$. By uniform continuity of F, we have $w(F, \delta) \to 0$ as $\delta \to 0$.

Let us consider the following condition:
There exists a constant p with $0 < p \leq 1$ such that $w(F, \lambda \delta) \leq [1 + \lambda^\frac{1}{p}] w(F, \delta)$, for all $F \in C(X; C)$ and all $\delta, \lambda > 0$.

If X is a compact convex subset of a q-normed linear space with $0 < q \leq 1$, then (*) holds for $p = q$.

The following result is proved in [4]:

Lemma 5. Assume that (*) holds. Let $F \in C(X; C)$ and $\delta > 0$ be given. Then

$$d_H(F(x), F(t)) \leq \left[1 + \left(\frac{\tilde{d}(x,t)}{\delta}\right)^{\frac{1}{p}}\right] w(F, \delta)$$

for every pair, x and t, of elements of X.

If $\{T_n\}_{n \geq 1}$ is a sequence of convex conic operators on $C(X; C)$ that are regular, let

$$a_n(x) = (\tilde{T}_n((\tilde{d}_x)^{\frac{1}{p}}), x)$$

for all $x \in X$, where p is given by condition (*).

Proposition 2. Assume that (*) holds. Let $\{T_n\}_{n \geq 1}$ be a sequence of convex conic operators on $C(X; C)$ such that each T_n is monotone and regular. Then

$$d_H\left((T_n F, x), F(x)\right) \leq \left[\tilde{T}_n(e_0), x\right] + \frac{1}{\delta^\frac{1}{p}} a_n(x) w(F, \delta) + d_H\left((T_n[F(x)]^*, x), F(x)\right)$$

for every $F \in C(X; C)$, $x \in X$ and $\delta > 0$.

Proof: Let $F \in C(X; C)$ and $\delta > 0$ be given. By Lemma 5, for $t, x \in X$

$$F(t) \leq F(x) + \left[1 + \left(\frac{\tilde{d}(x,t)}{\delta}\right)^{\frac{1}{p}}\right] w(F, \delta) B$$

$$= F(x) + w(F, \delta) \left[B + \frac{1}{\delta^\frac{1}{p}} (\tilde{d}(x,t))^{\frac{1}{p}} \otimes B\right]$$

Hence,

$$F \leq [F(x)]^* + w(F, \delta) \left[B^* + \frac{1}{\delta^\frac{1}{p}} (\tilde{d}_x)^{\frac{1}{p}} \otimes B\right].$$

Since each T_n is monotone and regular we have

$$(T_n F, x) \leq (T_n[F(x)]^*, x) + w(F, \delta) \left[\tilde{T}_n(e_0), x\right] + \frac{1}{\delta^\frac{1}{p}} a_n(x) B$$
for all \(x \in X \). Similarly,
\[
\left(T_n[F(x)]^*, x \right) \leq \left(T_n F, x \right) + w(F, \delta) \left[(\hat{T}_n(e_0), x) + \frac{1}{\delta^p} a_n(x) \right] B
\]
for all \(x \in X \). Therefore
\[
d_H \left((T_n F, x), (T_n[F(x)]^*, x) \right) \leq w(F, \delta) \left[(\hat{T}_n(e_0), x) + \frac{1}{\delta^p} a_n(x) \right].
\]
for all \(x \in X \).

Theorem 3. Let \((X, \tilde{d})\) be a compact metric space and \((\mathcal{C}, d_H)\) be a Hausdorff convex cone. Let \(\{T_n\}_{n \geq 1} \) be a sequence of convex conic operators on \(C(X; \mathcal{C}) \) such that each \(T_n \) is monotone and regular. Assume that (*) holds and that
\begin{itemize}
 \item[i)] \(T_n B^* \to B^* \),
 \item[ii)] \(a_n(x) = 0(\frac{1}{n}) \), uniformly \(x \in X \).
\end{itemize}
Then \(T_n F \to F \), for every \(F \in C(X; \mathcal{C}) \).

Proof: Let \(F \in C(X; \mathcal{C}) \) and \(\varepsilon > 0 \) be given. By i), Remark 5 and Lemma 4 choose \(n_1 \) so that \(n \geq n_1 \) implies
\begin{itemize}
 \item[(1)] \((\hat{T}_n(e_0), x) < 1 + \varepsilon/2 \),
 \item[(2)] \(d_H ((T_n[F(x)]^*, x), F(x)) < \varepsilon/2 \),
\end{itemize}
for all \(x \in X \). By ii) there is some constant \(k > 0 \) such that
\begin{itemize}
 \item[(3)] \(n a_n(x) \leq k \),
\end{itemize}
for \(n = 1, 2, \ldots \) and all \(x \in X \). Since \(w(F, \delta) \to 0 \) as \(\delta \to 0 \), we can choose \(n_2 \) such that \(n \geq n_2 \) implies
\begin{itemize}
 \item[(4)] \(w(F, n^{-p}) < (\varepsilon/2) (1 + k + \varepsilon/2)^{-1} \).
\end{itemize}
By Proposition 2 and (1)--(4), it follows that for \(n \geq n_0 = \max\{n_1, n_2\} \)
\[
d_H \left((T_n F, x), F(x) \right) \leq \left[(\hat{T}_n(e_0), x) + \frac{1}{\delta^p} a_n(x) \right] w(F, \delta) + d_H \left((T_n[F(x)]^*, x), F(x) \right)
\leq \left[(\hat{T}_n(e_0), x) + n a_n(x) \right] w(F, n^{-p}) + d_H \left((T_n[F(x)]^*, x), F(x) \right)
< (1 + k + \varepsilon/2) w(F, n^{-p}) + \varepsilon/2 < \varepsilon
\]
for all \(x \in X \). Hence \(T_n F \to F \). ■

ACKNOWLEDGEMENT - We wish to thank Professor J.B. Prolla of UNICAMP, for many helpful conversations on the subject of this paper.
REFERENCES

M.S.M. Roversi, A.O. Chiacchio and M.L.B. Queiroz,
IMECC–UNICAMP, Caixa Postal 6065, 13081-970 Campinas – BRASIL