TRANSFORMS FOR MINIMAL SURFACES
IN 5-DIMENSIONAL SPACE FORMS

Makoto Sakaki

Abstract. For a minimal surface in a 5-dimensional space form, we give transforms to get another minimal surface in another 5-or 4-dimensional space form.

1. Introduction

For a minimal surface in the 3-sphere S^3, the unit normal vector field, that is, the Gauss map gives another minimal surface in S^3 possibly with singularities (cf. [5]). It is generalized by Bolton, Pedit and Woodward [2] for superconformal minimal surfaces in odd-dimensional spheres. On the other hand, Bolton and Vrancken [3] discovered new transforms from a minimal surface with non-circular ellipse of curvature in the 5-sphere S^5, to another minimal surface in S^5, which are called (\pm)transforms (see also [1, 4]).

In this paper, generalizing them, we give transforms from a minimal surface in a 5-dimensional space form, to another minimal surface in another 5-or 4-dimensional space form.

Let $N^n(c)$ be the n-dimensional Riemannian space form of constant curvature c, where c is either 1, 0 or -1. In particular, let $N^n(1) = S^n$, $N^n(0) = R^n$ and $N^n(-1) = H^n$. Let R^{n+1}_i be the $(n+1)$-dimensional Minkowski space with standard coordinate system $(x_1, \cdots, x_n, x_{n+1})$ of signature $(+\cdots, +, -)$. Then

$$H^n = \{(x_1, \cdots, x_n, x_{n+1}) \in R^{n+1}_1 \mid x_1^2 + \cdots + x_n^2 - x_{n+1}^2 = -1\},$$

and

$$S^n_i = \{(x_1, \cdots, x_n, x_{n+1}) \in R^{n+1}_i \mid x_1^2 + \cdots + x_n^2 - x_{n+1}^2 = 1\},$$

where S^n_i is the n-dimensional de Sitter space.

Let $f: M \rightarrow N^5(c)$ be an immersion of a 2-dimensional manifold M into $N^5(c)$. We denote by h the second fundamental form of f. The first normal space $T^+_1(x)$ at $x \in M$ is defined by

$$T^+_1(x) = \{h(X, Y) \mid X, Y \in T_xM\}.$$
The ellipse of curvature \(E(x) \) at \(x \in M \) is defined by
\[
E(x) = \{ h(X,X) \mid X \in T_x M, \ |X| = 1 \}.
\]

We assume that \(f : M \to N^5(c) \) is a minimal immersion. Suppose that the ellipse of curvature is non-degenerate at any point. Then the dimension of the first normal space is 2 at any point. Let \(e_5 \) be the unit normal vector to \(f(M) \) which is orthogonal to the first normal space. Then we can regard \(G = e_5 \) as a map to either \(S^5_5, S^4_4 \) or \(S^1_5 \), according to when \(c = 1, 0 \) or \(-1 \). It is the Gauss-like map.

Theorem 1.1. Let \(f : M \to N^5(c) \) be a minimal surface. Suppose that the ellipse of curvature is a non-degenerate circle at any point. If the Gauss-like map \(G \) is non-degenerate, then it gives a minimal surface in either \(S^5_5, S^4_4 \) or \(S^1_5 \).

Remark 1.1. The case \(c = 1 \) can be seen in [2].

Next we consider the case where the ellipse of curvature is not a circle. For a minimal surface \(f : M \to N^5(c) \), suppose that the ellipse of curvature is non-degenerate and non-circular at any point. Let \(a \) and \(b \) be the semi-minor and semi-major axes of the ellipse of curvature, respectively. We choose the local normal orthonormal frame field \(\{ e_\alpha \}_{3 \leq \alpha \leq 5} \) so that \(e_3 \) is in the direction of the semi-minor axis and \(e_4 \) is in the direction of the semi-major axis. Now, for \(\varepsilon = +1 \) or \(-1 \), let
\[
f^\varepsilon = \varepsilon \sqrt{1 - \left(\frac{a}{b} \right)^2 e_4 + \frac{a}{b} e_5}.
\]
Then \(f^\varepsilon \) is a map to either \(S^5_5, S^4_4 \) or \(S^1_5 \), according to when \(c = 1, 0 \) or \(-1 \).

Theorem 1.2. Let \(f : M \to N^5(c) \) be a minimal surface. Suppose that the ellipse of curvature is non-degenerate and non-circular at any point. Then \(f^\varepsilon \) gives a minimal surface in either \(S^5_5, S^4_4 \) or \(S^1_5 \).

Remark 1.2. It is a generalization of [3] for \(S^5_5 \).

2. Preliminaries

In this section, we recall the method of moving frames for surfaces in 5-dimensional space forms. We shall use the following convention on the ranges of indices:

\[
1 \leq A, B, \ldots \leq 5, \quad 1 \leq i, j, \ldots \leq 2, \quad 3 \leq \alpha, \beta, \ldots \leq 5.
\]

Let \(\{ e_A \} \) be a local orthonormal frame field in \(N^5(c) \), and \(\{ \omega^A \} \) be the dual coframe field. Let \(\omega^A_B \) denote the connection forms which satisfy \(\omega^A_B = -\omega^B_A \). The structure equations are given by
\[
d\omega^A = - \sum_B \omega^A_B \wedge \omega^B,
\]
(2.1)
\[
d\omega^A_B = - \sum_C \omega^A_C \wedge \omega^B_C + \frac{1}{2} \sum_{C,D} R^A_{BCD} \omega^C \wedge \omega^D, \quad R^A_{BCD} = c(\delta^A_C \delta_{BD} - \delta^A_D \delta_{BC}).
\]

Let \(f : M \to N^5(c) \) be a surface in \(N^5(c) \). When \(c = 1 \), \(f \) is an \(R^6 \)-valued map with \(\langle f, f \rangle = 1 \). When \(c = -1 \), \(f \) is an \(R^6 \)-valued map with \(\langle f, f \rangle = -1 \).
We choose the frame \(\{ e_A \} \) so that \(\{ e_i \} \) are tangent to \(f(M) \). In the following, the argument will be restricted to \(f(M) \). Then \(\omega^\alpha = 0 \) along \(f(M) \), and by (2.1), we have

\[
0 = - \sum_i \omega^\alpha_i \wedge \omega^i.
\]

So there exists a symmetric tensor \(\{ h^\alpha_{ij} \} \) so that

\[
\omega^\alpha_i = \sum_j h^\alpha_{ij} \omega^j,
\]

where \(h^\alpha_{ij} \) are the components of the second fundamental form \(h \) of \(f \).

In the ambient \(R^n(\supset S^5) \), \(R^5 \) or \(R^6(\supset H^5) \), according to when \(c = 1, 0 \) or \(-1\), we have

\[
d e_j = \sum_i e_i \omega^j_i + \sum_\alpha e_\alpha \omega^\alpha_j - cf \omega^j,
\]

and

\[
d e_\beta = \sum_i e_i \omega^\beta_i + \sum_\alpha e_\alpha \omega^\alpha_\beta.
\]

The mean curvature vector \(H \) of \(f \) is given by

\[
H = \frac{1}{2} \sum_\alpha (h^\alpha_{11} + h^\alpha_{22}) e_\alpha.
\]

We say that \(f \) is minimal if \(H = 0 \) identically.

3. Proof of Theorem 1.1

Proof. Since the ellipse of curvature is a non-degenerate circle at any point, we can choose the local orthonormal frame field \(\{ e_A \} \) so that

\[
(h^3_{ij}) = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \quad (h^4_{ij}) = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}, \quad (h^5_{ij}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},
\]

where \(a > 0 \). Then

\[
\omega^3_1 = a \omega^1, \quad \omega^3_2 = -a \omega^2, \quad \omega^4_1 = a \omega^2, \quad \omega^4_2 = a \omega^1, \quad \omega^5_1 = \omega^5_2 = 0.
\]

We compute that

\[
0 = d \omega^5_1 = -\omega^3_2 \wedge \omega^4_1 - \omega^4_2 \wedge \omega^3_1 = a (\omega^1 \wedge \omega^3_2 - \omega^3_1 \wedge \omega^2)
\]

and

\[
0 = d \omega^5_2 = -\omega^3_1 \wedge \omega^4_2 - \omega^4_1 \wedge \omega^3_2 = a (\omega^2 \wedge \omega^1).
\]

Then, using the notation like

\[
\omega^5_1 = (\omega^5_1)_1 \omega^1 + (\omega^5_1)_2 \omega^2, \quad \omega^5_2 = (\omega^5_2)_1 \omega^1 + (\omega^5_2)_2 \omega^2,
\]

we have

\[
(\omega^5_1)_2 - (\omega^5_2)_1 = 0, \quad (\omega^5_1)_1 + (\omega^5_2)_2 = 0.
\]

So we can write

\[
\omega^5_1 = p \omega^1 + q \omega^2, \quad \omega^5_2 = q \omega^1 - p \omega^2
\]

for some functions \(p \) and \(q \).
For the Gauss-like map \(G = e_5 \), we have
\[dG(e_1) = de_5(e_1) = (\omega_5^1)_1 e_3 + (\omega_5^3)_1 e_4 = -pe_3 - qe_4, \]
\[dG(e_2) = de_5(e_2) = (\omega_5^3)_2 e_3 + (\omega_5^3)_2 e_4 = -qe_3 + pe_4, \]
and
\[\langle dG(e_1), dG(e_1) \rangle = \langle dG(e_2), dG(e_2) \rangle = p^2 + q^2, \quad \langle dG(e_1), dG(e_2) \rangle = 0. \]
Assume that \(G \) is non-degenerate in the following. Then \(p^2 + q^2 > 0 \), and \(G \) is conformal to \(f \).

Now we have
\[dG = -e_3(p\omega^1 + q\omega^2) - e_4(q\omega^1 - p\omega^2). \]
Let \(* \) denote the Hodge star operator so that \(*\omega^1 = \omega^2 \) and \(*\omega^2 = -\omega^1 \). Then
\[*dG = e_3(q\omega^1 - p\omega^2) - e_4(p\omega^1 + q\omega^2) = e_3\omega_1^0 - e_4\omega_2^0. \]
We can compute that
\[d(*dG) = -2(p^2 + q^2)e_5\omega^1 \wedge \omega^2. \]
Denoting the Laplacian by \(\Delta \), we get \(\Delta G = -2(p^2 + q^2)G \). So the Gauss-like map \(G \) is a conformal harmonic map to either \(S^5 \), \(S^4 \) or \(S^4_1 \), according to when \(c = 1, 0 \) or \(-1 \). Thus \(G \) gives a minimal surface in either \(S^5 \), \(S^4 \) or \(S^4_1 \). \(\square \)

4. Proof of Theorem 1.2

Proof. Since the ellipse of curvature is non-degenerate and non-circular at any point, we can choose the local orthonormal frame field \(\{ e_A \} \) so that
\[(h_3^1) = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \quad (h_3^2) = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix}, \quad (h_3^5) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \]
where \(0 < a < b \). We note that \(a \) and \(b \) are the semi-minor and semi-major axes of the ellipse of curvature, respectively. Then we have
\[\omega_1^3 = a\omega^1, \quad \omega_2^3 = -a\omega^2, \quad \omega_4^3 = b\omega^2, \quad \omega_2^4 = b\omega^1, \quad \omega_5^5 = \omega_2^5 = 0. \]

We compute that
\[d\omega_1^3 = da \wedge \omega^1 - a\omega_1^2 \wedge \omega^2 = -\omega_3^2 \wedge \omega_1^3 - \omega_3^2 \wedge \omega_1^3 = a\omega_3^2 \wedge \omega^2 - b\omega_4^2 \wedge \omega^2. \]
Using the notation like
\[\omega_2^1 = (\omega_2^1)_1\omega^1 + (\omega_2^1)_2\omega^2, \quad \omega_3^1 = (\omega_3^1)_1\omega^1 + (\omega_3^1)_2\omega^2, \]
\[da = a_1\omega^1 + a_2\omega^2, \quad db = b_1\omega^1 + b_2\omega^2, \]
we have
\[2a(\omega_2^1)_1 - b(\omega_3^1)_1 = -a_2. \]
Similarly, from \(d\omega_2^3 \), \(d\omega_4^3 \) and \(d\omega_5^4 \),
\[2a(\omega_2^3)_2 - b(\omega_3^4)_2 = a_1, \quad 2b(\omega_2^3)_2 - a(\omega_3^4)_2 = b_1, \quad 2b(\omega_2^3)_1 - a(\omega_3^4)_1 = -b_2. \]
Thus we get
\[2a\omega_2^3 - b\omega_3^4 = *da, \quad 2b\omega_2^3 - a\omega_3^4 = *db, \]
and
\[\omega^1_2 = \frac{1}{4} (s \log(b^2 - a^2)), \quad \omega^3_4 = \frac{a(sdb) - b(sda)}{b^2 - a^2} = -s(d(a/b))/1 - (a/b)^2. \]

Next we compute that
\[0 = d\omega^5_1 = -\omega^5_3 \wedge \omega^5_1 - \omega^5_4 \wedge \omega^5_1 = a\omega^1 \wedge \omega^3_4 - b\omega^1_4 \wedge \omega^2 \]

and
\[0 = d\omega^5_2 = -\omega^5_3 \wedge \omega^5_2 - \omega^5_4 \wedge \omega^5_2 = a\omega^5_3 \wedge \omega^2 + b\omega^1 \wedge \omega^5_4. \]
Then we can write
\[\omega^5_3 = b(p\omega^1 + q\omega^2), \quad \omega^5_5 = a(q\omega^1 - p\omega^2) \]
for some functions \(p \) and \(q \).

From \(d\omega^3_4 = -\omega^3_4 \wedge \omega^3_1 - \omega^3_2 \wedge \omega^3_1 - \omega^3_4 \wedge \omega^5_2 \), we obtain
\begin{equation}
(4.1) \quad \frac{-\Delta(a/b)}{1 - (a/b)^2} + \frac{2(a/b)|d(a/b)|^2}{(1 - (a/b)^2)^2} = ab(2 - p^2 - q^2).
\end{equation}

Set \(r = a/b \). Then \(f^r = \varepsilon \sqrt{1 - r^2} e_4 + r e_3 \). We can compute that
\[df^r(e_1) = -\varepsilon b \sqrt{1 - r^2} e_2 + \left(\varepsilon \frac{r_2}{\sqrt{1 - r^2}} - ap \right) e_3 \]
\[- \left(\varepsilon \frac{r_1}{\sqrt{1 - r^2}} + aq \right)(re_4 - \varepsilon \sqrt{1 - r^2} e_3), \]
and
\[df^r(e_2) = -\varepsilon b \sqrt{1 - r^2} e_1 - \left(\varepsilon \frac{r_1}{\sqrt{1 - r^2}} + aq \right)e_3 \]
\[- \left(\varepsilon \frac{r_2}{\sqrt{1 - r^2}} - ap \right)(re_4 - \varepsilon \sqrt{1 - r^2} e_3). \]

Set
\[A = \varepsilon \frac{r_1}{\sqrt{1 - r^2}} + aq, \quad B = \varepsilon \frac{r_2}{\sqrt{1 - r^2}} - ap. \]
Then we have
\[\langle df^r(e_1), df^r(e_1) \rangle = \langle df^r(e_2), df^r(e_2) \rangle = b^2 - a^2 + A^2 + B^2(> 0) \]
\[= b^2 - a^2 + |dr|^2 - \frac{2\varepsilon a(qr_1 - pr_2)}{\sqrt{1 - r^2}} + a^2(p^2 + q^2), \]
and \(\langle df^r(e_1), df^r(e_2) \rangle = 0 \). So \(f^r \) is conformal to \(f \).

Now we have
\[df^r = -\varepsilon b \sqrt{1 - r^2}(e_2\omega^1 + e_1\omega^2) - \varepsilon e_3(s \sin^{-1} r) - ae_3(p\omega^1 + q\omega^2) \]
\[+ \varepsilon e_4(\sqrt{1 - r^2} + e_5 dr - a e_4(q\omega^1 - p\omega^2) + e_5 \sqrt{1 - r^2} e_5(q\omega^1 - p\omega^2), \]
and
\[+ df^r = \varepsilon \sqrt{1 - r^2}(e_1\omega^2 - e_2\omega^1) + \varepsilon e_3 s (\sin^{-1} r) + e_3\omega^5_4 \]
\[+ \varepsilon e_4(s \sqrt{1 - r^2}) + e_5 s dr - r^2 e_4\omega^5_4 + e_5 \sqrt{1 - r^2} e_5\omega^5_4. \]
We need to compute $d(*df^\varepsilon)$ to get Δf^ε. We note that
\[
\Delta (\sqrt{1-r^2}) = -\frac{r \Delta r}{\sqrt{1-r^2}} - \frac{|dr|^2}{(1-r^2)^{3/2}},
\]
and by (4.1),
\[
\Delta r = ab(p^2 + q^2 - 2)(1-r^2) - \frac{2r|dr|^2}{1-r^2}.
\]
By a little long but straight computation, we can show that
\[
\Delta f^\varepsilon = -2\left(b^2 - a^2 + \frac{|dr|^2}{1-r^2} + \frac{2sa(qr_1 - pr_2)}{\sqrt{1-r^2}} + a^2(p^2 + q^2)\right)f^\varepsilon.
\]
Hence, the map f^ε is a conformal harmonic map to either S^5, S^4 or S^5_1, according to when $c = 1$, 0 or -1. Thus f^ε gives a minimal surface in either S^5, S^4 or S^5_1. □

References