Abstract. We study 3-dimensional f-Kenmotsu manifolds with the Schouten–van Kampen connection. With the help of such a connection, we study projectively flat, conharmonically flat, Ricci semisymmetric and semisymmetric 3-dimensional f-Kenmotsu manifolds. Finally, we give an example of 3-dimensional f-Kenmotsu manifolds with the Schouten–van Kampen connection.

1. Introduction

The Schouten–van Kampen connection is one of the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed with an affine connection $^{[2]}$. Solov’ev investigated hyperdistributions in Riemannian manifolds using the Schouten–van Kampen connection $^{[12]}$. Then Olszak studied the Schouten–van Kampen connection to an almost contact metric structure $^{[8]}$. He characterized some classes of almost contact metric manifolds with the Schouten–van Kampen connection and found certain curvature properties of this connection on these manifolds.

On the other hand, let M be an almost contact manifold, i.e., M is a connected $(2n+1)$-dimensional differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) $^{[1]}$. Denote by Φ the fundamental 2-form of M, $\Phi(X,Y) = g(X,\phi Y)$, $X,Y \in \chi(M)$, $\chi(M)$ being the Lie algebra of differentiable vector fields on M.

For further use, we recall the following definitions $^{[1,3,10]}$. The manifold M and its structure (ϕ, ξ, η, g) is said to be:

i) normal, if the almost complex structure defined on the product manifold $M \times \mathbb{R}$ is integrable (equivalently $[\phi, \phi] + 2d\eta \otimes \xi = 0$),

ii) almost cosymplectic, if $d\eta = 0$ and $d\Phi = 0$.

2010 Mathematics Subject Classification: 53C15, 53C25, 53C50.

Key words and phrases: Schouten-van Kampen connection, f-Kenmotsu manifolds, Ricci-semisymmetric, semisymmetric, Einstein manifold, η-Einstein manifold.

Communicated by Stevan Pilipović.
iii) cosymplectic, if it is normal and almost cosymplectic (equivalently, \(\nabla \phi = 0 \), \(\nabla \) being covariant differentiation with respect to the Levi-Civita connection).

The manifold \(M \) is called locally conformal, cosymplectic (respectively almost cosymplectic), if \(M \) has an open covering \(\{ U_t \} \) endowed with differentiable functions \(\sigma_t : U_t \to \mathbb{R} \) such that over each \(U_t \) the almost contact metric structure \((\phi_t, \xi_t, \eta_t, g_t) \) defined by

\[
\phi_t = \phi, \quad \xi_t = e^{\sigma_t} \xi, \quad \eta_t = e^{-\sigma_t} \eta, \quad g_t = e^{-2\sigma_t} g
\]

is cosymplectic (respectively almost cosymplectic).

Also, Olszak and Rosca \[9\] studied normal locally conformal almost cosymplectic manifolds. They given a geometric interpretation of \(f \)-Kenmotsu manifolds and studied some curvature properties. Among others they proved that a Ricci symmetric \(f \)-Kenmotsu manifold is an Einstein manifold.

By an \(f \)-Kenmotsu manifold, we mean an almost contact metric manifold which is normal and locally conformal almost cosymplectic manifold.

In the present paper we study some curvature properties of 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection. The paper is organized as follows: after introduction, we give the Schouten–van Kampen connection and \(f \)-Kenmotsu manifolds. Then we adapt the Schouten–van Kampen connection on 3-dimensional \(f \)-Kenmotsu manifolds. In section 5 we study projectively flat 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection. In section 6 we consider conharmonically flat 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection. Section 7 is devoted to study Ricci semisymmetric 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection and we prove that if a 3-dimensional \(f \)-Kenmotsu manifold is Ricci semisymmetric, then it is an \(\eta \)-Einstein manifold. In section 8 we study semisymmetric 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection. Finally, we give an example of a 3-dimensional \(f \)-Kenmotsu manifold with the Schouten–van Kampen connection which verifies Theorem 5.1 and Theorem 6.1.

2. The Schouten–van Kampen connection

Let \(M \) be a connected pseudo-Riemannian manifold of an arbitrary signature \((p, n - p), 0 \leq p \leq n, n = \dim M \geq 2 \). By \(g \) and \(\nabla \) we denote the pseudo-Riemannian metric and Levi-Civita connection induced from the metric \(g \) on \(M \) respectively. Assume that \(H \) and \(V \) are two complementary, orthogonal distributions on \(M \) such that \(\dim H = n - 1, \dim V = 1 \), and the distribution \(V \) is non-null. Thus \(TM = H \oplus V, H \cap V = \{ 0 \} \) and \(H \perp V \). Assume that \(\xi \) is a unit vector field and \(\eta \) is a linear form such that \(\eta(\xi) = 1, g(\xi, \xi) = \varepsilon = \pm 1 \) and

\[
H = \ker \eta, \quad V = \text{span}\{\xi\}.
\]

We can always choose such \(\xi \) and \(\eta \) at least locally (in a certain neighborhood of an arbitrarily chosen point of \(M \)). We also have \(\eta(X) = \varepsilon g(X, \xi) \). Moreover, it holds that \(\nabla_X \xi \in H \).
For any $X \in TM$, by X^h and X^v we denote the projections of X onto H and V, respectively. Thus, we have $X = X^h + X^v$ with

$$X^h = X - \eta(X)\xi, \quad X^v = \eta(X)\xi.$$

(2.1)

The Schouten–van Kampen connection $\tilde{\nabla}$ associated to the Levi-Civita connection ∇ and adapted to the pair of the distributions (H, V) is defined by

$$\tilde{\nabla}_X Y = \left(\nabla_X Y^h\right)^h + \left(\nabla_X Y^v\right)^v,$$

(2.2)

and the corresponding second fundamental form B is defined by $B = \nabla - \tilde{\nabla}$. Note that condition (2.2) implies the parallelism of the distributions H and V with respect to the Schouten–van Kampen connection $\tilde{\nabla}$.

From (2.1), one can compute

$$(\nabla_X Y^h)^h = \nabla_X Y - \eta(\nabla_X Y)\xi - \eta(Y)\nabla_X \xi,$$

$$(\nabla_X Y^v)^v = (\nabla_X \eta)(Y)\xi + \eta(\nabla_X Y)\xi,$$

which enables us to express the Schouten–van Kampen connection with help of the Levi-Civita connection in the following way

$$\tilde{\nabla}_X Y = \nabla_X Y - \eta(Y)\nabla_X \xi + (\nabla_X \eta)(Y)\xi.$$

(2.3)

Thus, the second fundamental form B and the torsion \tilde{T} of $\tilde{\nabla}$ are

$$B(X, Y) = \eta(Y)\nabla_X \xi - (\nabla_X \eta)(Y)\xi,$$

$$\tilde{T}(X, Y) = \eta(X)\nabla_Y \xi - \eta(Y)\nabla_X \xi + 2\eta(\nabla_X Y)\xi.$$

With the help of the Schouten–van Kampen connection (2.3), many properties of some geometric objects connected with the distributions H, V can be characterized. Probably, the most spectacular is the following statement: g, ξ and η are parallel with respect to $\tilde{\nabla}$, that is, $\tilde{\nabla} \xi = 0$, $\tilde{\nabla} g = 0$, $\tilde{\nabla} \eta = 0$.

3. f-Kemnotsu manifolds

Let M be a real $(2n + 1)$-dimensional differentiable manifold endowed with an almost contact structure (ϕ, ξ, η, g) satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

(3.1)

$$\phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(X) = g(X, \xi),$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

for any vector fields $X, Y \in \chi(M)$, where I is the identity of the tangent bundle TM, ϕ is a tensor field of $(1, 1)$-type, η is a 1-form, ξ is a vector field and g is a metric tensor field. We say that (M, ϕ, ξ, η, g) is a f-Kemnotsu manifold if the Levi-Civita connection of g satisfy

$$(\nabla_X \phi)(Y) = f \{g(\phi X, Y)\xi - \eta(Y)\phi X\},$$

where $f \in C^\infty(M)$ such that $df \wedge \eta = 0$. If $f = \alpha = \text{constant} \neq 0$, then the manifold is an α-Kemnotsu manifold [7]. 1-Kemnotsu manifold is a Kemnotsu manifold [6]. If $f = 0$, then the manifold is cosymplectic [5]. An f-Kemnotsu manifold is said to be regular if $f^2 + f' \neq 0$, where $f' = \xi(f)$.

For an f-Kenmotsu manifold from (3.1) it follows that
\begin{equation}
∇_X ξ = f\{X - η(X) ξ\}.
\end{equation}
Then using (3.2), we have
\begin{equation}
(∇_X η)(Y) = f\{g(X, Y) - η(X) η(Y)\}.
\end{equation}
The condition $df ∧ η = 0$ holds if $\dim M ≥ 5$. This does not hold in general if $\dim M = 3$.

As is well known, in a 3-dimensional Riemannian manifold, we always have
\begin{equation}
R(X, Y)Z = g(Y, Z) QX - g(X, Z) QY + S(Y, Z) X - S(X, Z) Y
\end{equation}
\[
-\frac{τ}{2}\{g(Y, Z) X - g(X, Z) Y\}.
\]
In a 3-dimensional f-Kenmotsu manifold M, we have [9]
\begin{equation}
R(X, Y)Z = \left(\frac{τ}{2} + 2f^2 + 2f'\right)\{g(Y, Z) X - g(X, Z) Y\}
\end{equation}
\[
-\left(\frac{τ}{2} + 3f^2 + 3f'\right)\{g(Y, Z) η(X) ξ - g(X, Z) η(Y) ξ + η(Y) η(Z) X - η(X) η(Z) Y\},
\end{equation}
\begin{equation}
S(X, Y) = \left(\frac{τ}{2} + f^2 + f'\right) g(X, Y) - \left(\frac{τ}{2} + 3f^2 + 3f'\right) η(X) η(Y),
\end{equation}
\begin{equation}
QX = \left(\frac{τ}{2} + f^2 + f'\right) X - \left(\frac{τ}{2} + 3f^2 + 3f'\right) η(X) ξ,
\end{equation}
where R denotes the curvature tensor, S is the Ricci tensor, Q is the Ricci operator and $τ$ is the scalar curvature of M.

From (3.4) and (3.5), we obtain
\begin{equation}
R(X, Y)ξ = -(f^2 + f')\{η(Y)X - η(X)Y\},
\end{equation}
\begin{equation}
S(X, ξ) = -2(f^2 + f') η(X).
\end{equation}

4. 3-dimensional f-Kenmotsu manifolds with the Schouten–van Kampen connection

Let M be a 3-dimensional f-Kenmotsu manifold with the Schouten–van Kampen connection. Then using (3.2) and (3.3) in (2.3), we get
\begin{equation}
\tilde{∇}_X Y = ∇_X Y + f\{g(X, Y) ξ - η(Y) X\}.
\end{equation}
Let R and \tilde{R} be the curvature tensors of the Levi-Civita connection $∇$ and the Schouten–van Kampen connection $\tilde{∇}$,
\begin{equation}
R(X, Y) = [∇_X, ∇_Y] - ∇_{[X,Y]}, \quad \tilde{R}(X, Y) = [\tilde{∇}_X, \tilde{∇}_Y] - \tilde{∇}_{[X,Y]}.
\end{equation}
Using (4.1), by direct calculations, we obtain the following formula connecting R and \tilde{R} on a 3-dimensional f-Kenmotsu manifold M,
\begin{equation}
\tilde{R}(X, Y)Z = R(X, Y)Z + f^2\{g(Y, Z) X - g(X, Z) Y\}
\end{equation}
\[
+ f'\{g(Y, Z) η(X) ξ - g(X, Z) η(Y) ξ + η(Y) η(Z) X - η(X) η(Z) Y\}.
\]
We will also consider the Riemann curvature $(0, 4)$-tensors \tilde{R}, R, the Ricci tensors \tilde{S}, S, the Ricci operators \tilde{Q}, Q and the scalar curvatures $\tilde{\tau}, \tau$ of the connections $\tilde{\nabla}$ and ∇ are given by

\begin{align}
\tilde{R}(X, Y, Z, W) &= R(X, Y, Z, W) + f^2 \{g(Y, Z) g(X, W) - g(X, Z) g(Y, W)\} \\
&\quad + f' \{g(Y, Z) \eta(X) \eta(W) - g(X, Z) \eta(Y) \eta(W) \}
+ g(X, W) \eta(Y) \eta(Z) - g(Y, W) \eta(X) \eta(Z)\},
\end{align}

\begin{align}
\tilde{S}(Y, Z) &= S(Y, Z) + (2f^2 + f') g(Y, Z) + f' \eta(Y) \eta(Z),
\end{align}

\begin{align}
\tilde{Q}X &= QX + (2f^2 + f')X + f' \eta(X) \xi, \\
\tilde{\tau} &= \tau + 6f^2 + 4f'.
\end{align}

respectively, where

\begin{align}
\tilde{R}(X, Y, Z, W) &= g(\tilde{R}(X, Y)Z, W) \quad \text{and} \quad R(X, Y, Z, W) = g(R(X, Y)Z, W).
\end{align}

5. Projectively flat 3-dimensional f-Kenmotsu manifolds with the Schouten–van Kampen connection

In this section, we study projectively flat 3-dimensional f-Kenmotsu manifolds with respect to the Schouten–van Kampen connection. In a 3-dimensional f-Kenmotsu manifold, the projective curvature tensor with respect to the Schouten–van Kampen connection is given by

\begin{align}
\tilde{P}(X, Y)Z &= \tilde{R}(X, Y)Z - \frac{1}{2} \{\tilde{S}(Y, Z)X - \tilde{S}(X, Z)Y\}.
\end{align}

If $\tilde{P} = 0$, then the manifold M is called projectively flat manifold with respect to the Schouten–van Kampen connection.

Let M be a projectively flat manifold with respect to the Schouten–van Kampen connection. From (5.1), we have

\begin{align}
\tilde{R}(X, Y)Z &= \frac{1}{2} \{\tilde{S}(Y, Z)X - \tilde{S}(X, Z)Y\}.
\end{align}

Using (4.3) and (4.4) in (5.2), we get

\begin{align}
g(R(X, Y)Z, W) + f^2 \{g(Y, Z) g(X, W) - g(X, Z) g(Y, W)\} \\
&\quad + f' \{g(Y, Z) \eta(X) \eta(W) - g(X, Z) \eta(Y) \eta(W) \}
+ g(X, W) \eta(Y) \eta(Z) - g(Y, W) \eta(X) \eta(Z)\}
&\quad = \frac{1}{2} \{S(Y, Z) g(X, W) - S(X, Z) g(Y, W) \\
&\quad + [2f^2 + f'][g(Y, Z) g(X, W) - g(X, Z) g(Y, W)] \\
&\quad + f' \eta(Y) \eta(Z) g(X, W) - \eta(X) \eta(Z) g(Y, W)\}.
\end{align}

Now putting $W = \xi$ in (5.3), we obtain

\begin{align}
(f^2 + f') \{g(Y, Z) \eta(Y) - g(Y, Z) \eta(X)\} + (f^2 + f') \{g(Y, Z) \eta(X) - g(X, Z) \eta(Y)\}
&\quad = \frac{1}{2} \{S(Y, Z) \eta(X) - S(X, Z) \eta(Y) + (2f^2 + f')[g(Y, Z) \eta(X) - g(X, Z) \eta(Y)]\},
\end{align}

\begin{align}
\tilde{S}(Y, Z) &= S(Y, Z) + (2f^2 + f') g(Y, Z) + f' \eta(Y) \eta(Z),
\end{align}

\begin{align}
\tilde{Q}X &= QX + (2f^2 + f')X + f' \eta(X) \xi, \\
\tilde{\tau} &= \tau + 6f^2 + 4f'.
\end{align}
which gives
\[S(Y, Z) \eta(X) - S(X, Z) \eta(Y) + (2f^2 + f') [g(Y, Z) \eta(X) - g(X, Z) \eta(Y)] = 0. \]

Again putting \(X = \xi \) in (5.4), we get
\[S(Y, Z) = -(2f^2 + f') g(Y, Z) - f' \eta(Y) \eta(Z). \]

Thus \(M \) is an \(\eta \)-Einstein manifold with respect to the Levi-Civita connection.

Also, using (5.5) in (4.4), we obtain
\[\tilde{S}(Y, Z) = 0. \]

Hence the manifold \(M \) is a Ricci-flat manifold with respect to the Schouten–van Kampen connection. Then from (5.2) the manifold \(M \) is a flat manifold with respect to the Schouten–van Kampen connection.

Conversely, let \(M \) be a flat manifold with respect to the Schouten–van Kampen connection. Then we say that the manifold \(M \) is a Ricci-flat manifold with respect to the Schouten–van Kampen connection. Hence from (5.1), we get
\[\tilde{P}(X, Y) Z = 0, \]
that is, the manifold \(M \) is a projectively flat manifold with respect to the Schouten–van Kampen connection. Thus we have the following:

Theorem 5.1. Let \(M \) be a 3-dimensional \(f \)-Kenmotsu manifold with the Schouten–van Kampen connection. Then the following statements are equivalent:

i) \(M \) is projectively flat with respect to the Schouten–van Kampen connection,

ii) \(M \) is Ricci flat with respect to the Schouten–van Kampen connection,

iii) \(M \) is flat with respect to the Schouten–van Kampen connection.

6. Conharmonically flat 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection

In this section, we study conharmonically flat 3-dimensional \(f \)-Kenmotsu manifolds with respect to the Schouten–van Kampen connection. In a 3-dimensional \(f \)-Kenmotsu manifold the conharmonic curvature tensor with respect to the Schouten–van Kampen connection is given by

\[\tilde{K}(X, Y) Z = \tilde{R}(X, Y) Z - \{ \tilde{S}(Y, Z) X - \tilde{S}(X, Z) Y + g(Y, Z) \tilde{Q} X - g(X, Z) \tilde{Q} Y \}. \]

If \(\tilde{K} = 0 \), then the manifold \(M \) is called **conharmonically flat** manifold with respect to the Schouten–van Kampen connection.

Let \(M \) be a conharmonically flat manifold with respect to the Schouten–van Kampen connection. From (6.1), we have

\[\tilde{R}(X, Y) Z = \tilde{S}(Y, Z) X - \tilde{S}(X, Z) Y + g(Y, Z) \tilde{Q} X - g(X, Z) \tilde{Q} Y. \]

Using (4.3), (4.4) and (4.5) in (6.2), we get

\[R(X, Y) Z + f^2 \{ g(Y, Z) X - g(X, Z) Y \} \]

\[+ f' \{ g(Y, Z) \eta(X) \xi - g(X, Z) \eta(Y) \xi + \eta(Y) \eta(Z) X - \eta(X) \eta(Z) Y \} \]

\[= S(Y, Z) X - S(X, Z) Y \]

\[+ \left(4f^2 + 2f' + \frac{r}{2} + f^2 + f' \right) \{ g(Y, Z) X - g(X, Z) Y \}. \]
Now putting $X = \xi$ in (6.3), we obtain

\begin{align}
R(\xi, Y)Z &+ (f^2 + f')\{g(Y, Z)\xi - \eta(Z)Y\} \\
&= S(Y, Z)\xi - S(\xi, Z)Y \\
&+ \left(4f^2 + 2f' + \frac{\tau}{2} + f''\right)\{g(Y, Z)\xi - \eta(Z)Y\} \\
&+ f'\{\eta(Y)\eta(Z)\xi - \eta(\xi)Y\} \\
&+ \left(f' - \frac{\tau}{2} - 3f^2 - 3f'\right)\{g(Y, Z)\xi - \eta(Z)\eta(Y)\xi\}.
\end{align}

Using (3.4) and (3.7) in (6.4), we get

\begin{align}
S(Y, Z)\xi - S(\xi, Z)Y + \left(4f^2 + 2f' + \frac{\tau}{2} + f''\right)\{g(Y, Z)\xi - \eta(Z)Y\} \\
&+ f'\{\eta(Y)\eta(Z)\xi - \eta(\xi)Y\} \\
&+ \left(f' - \frac{\tau}{2} - 3f^2 - 3f'\right)\{g(Y, Z)\xi - \eta(Z)\eta(Y)\xi\} = 0.
\end{align}

Taking the inner product with ξ in (6.5), we have

\begin{align}
S(Y, Z) + 2(f^2 + f')\eta(Y)\eta(Z) + (2f^2 + f')\{g(Y, Z) - \eta(Y)\eta(Z)\} = 0,
\end{align}

which gives

\begin{align}
S(Y, Z) = -(2f^2 + f')g(Y, Z) - f'\eta(Y)\eta(Z).
\end{align}

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection.

Using (6.6) in (6.4), we obtain $\tilde{S}(Y, Z) = 0$. Hence the manifold M is a Ricci-flat manifold with respect to the Schouten–van Kampen connection. Then from (6.2), the manifold M is a flat manifold with respect to the Schouten–van Kampen connection.

Conversely, let M be a flat manifold with respect to the Schouten–van Kampen connection. Then we say that the manifold M is a Ricci-flat manifold with respect to the Schouten–van Kampen connection. Hence from (6.1), we get $\tilde{K}(X, Y)Z = 0$. i.e., the manifold M is a conharmonically flat manifold with respect to the Schouten–van Kampen connection. Thus we have the following:

Theorem 6.1. Let M be a 3-dimensional f-Kenmotsu manifold with the Schouten–van Kampen connection. Then the following statements are equivalent:

i) M is conharmonically flat with respect to the Schouten–van Kampen connection,

ii) M is Ricci flat with respect to the Schouten–van Kampen connection,

iii) M is flat with respect to the Schouten–van Kampen connection.
7. Ricci semisymmetric 3-dimensional f-Kenmotsu manifolds with the Schouten–van Kampen connection

A f-Kenmotsu manifold with the Schouten–van Kampen connection is called Ricci semisymmetric if $\bar{R}(X,Y) \cdot \bar{S} = 0$, where $\bar{R}(X,Y)$ is treated as a derivation of the tensor algebra for any tangent vectors X, Y. Then

\begin{equation}
\tilde{S}(\bar{R}(X,Y)Z,W) + \tilde{S}(Z,\bar{R}(X,Y)W) = 0.
\end{equation}

Using (4.3) and (4.4) in (7.1), we get

\begin{align*}
S(R(X,Y)Z,W) + S(Z,R(X,Y)W) + f' \{ \eta(R(X,Y)Z) \eta(W) \\
+ f' \eta(R(X,Y)W) \eta(Z) \} + f^2 \{ S(X,W) g(Y,Z) - S(Y,W) g(X,Z) \\
+ S(X,Z) g(Y,W) - S(Y,Z) g(X,W) \} \\
- f'(f^2 + f') \{ g(Y,Z) \eta(X) \eta(W) - g(X,Z) \eta(Y) \eta(W) + g(Y,W) \eta(X) \eta(Z) \\
- g(X,W) \eta(Y) \eta(Z) \} + f' \{ S(X,W) \eta(Y) \eta(Z) - S(Y,W) \eta(X) \eta(Z) \\
+ S(X,Z) \eta(Y) \eta(W) - S(Y,Z) \eta(X) \eta(W) \} = 0.
\end{align*}

Let M be Ricci semisymmetric with respect to the Levi-Civita connection. Then we have

\begin{equation}
f'(\eta(R(X,Y)Z) \eta(W) + f' \eta(R(X,Y)W) \eta(Z)) + f^2 \{ S(X,W) g(Y,Z) \\
- S(Y,W) g(X,Z) + S(X,Z) g(Y,W) - S(Y,Z) g(X,W) \} \\
f'(f^2 + f') \{ g(Y,Z) \eta(X) \eta(W) - g(X,Z) \eta(Y) \eta(W) + g(Y,W) \eta(X) \eta(Z) \\
- g(X,W) \eta(Y) \eta(Z) \} + f' \{ S(X,W) \eta(Y) \eta(Z) - S(Y,W) \eta(X) \eta(Z) \\
+ S(X,Z) \eta(Y) \eta(W) - S(Y,Z) \eta(X) \eta(W) \} = 0.
\end{equation}

Putting $W = \xi$ in (7.2), we obtain

\begin{align*}
f' \eta(R(X,Y)Z) + f^2 \{ S(X,\xi) g(Y,Z) - S(Y,\xi) g(X,Z) \\
+ S(X,Z) \eta(Y) - S(Y,Z) \eta(X) \} \\
f'(f^2 + f') \{ g(Y,Z) \eta(X) - g(X,Z) \eta(Y) \} + f' \{ S(X,\xi) \eta(Y) \eta(Z) \\
- S(Y,\xi) \eta(X) \eta(Z) + S(X,Z) \eta(Y) - S(Y,Z) \eta(X) \} = 0.
\end{align*}

After some calculations, we get

\begin{equation}
2(f^2 + f')^2 \{ g(Y,Z) \eta(X) - g(X,Z) \eta(Y) \} \\
- (f^2 + f') \{ S(Y,Z) \eta(X) - S(X,Z) \eta(Y) \} = 0.
\end{equation}

Again putting $X = \xi$ in (7.3), we have

\begin{equation}
2(f^2 + f')^2 \{ g(Y,Z) - \eta(Y) \eta(Z) \} - (f^2 + f') \{ S(Y,Z) + 2(f^2 + f') \eta(Y) \eta(Z) \} = 0,
\end{equation}

which gives

\begin{equation}
(f^2 + f') \{ S(Y,Z) + 4(f^2 + f') \eta(Y) \eta(Z) - 2(f^2 + f') g(Y,Z) \} = 0.
\end{equation}
Let \(f^2 + f' \neq 0 \), then from (7.4), we get
\[
S(Y, Z) = 2(f^2 + f') g(Y, Z) - 4(f^2 + f') \eta(Y) \eta(Z).
\]
Hence the manifold is an \(\eta \)-Einstein manifold with respect to the Levi-Civita connection.

Using (7.5) in (4.4), we obtain
\[
\tilde{S}(Y, Z) = (4f^2 + 3f') g(Y, Z) - (4f^2 + 3f') \eta(Y) \eta(Z).
\]
Thus we have the following:

Theorem 7.1. Let \(M \) be a Ricci semisymmetric 3-dimensional regular \(f \)-Kenmotsu manifold with the Schouten–van Kampen connection. If \(M \) is a Ricci semisymmetric 3-dimensional \(f \)-Kenmotsu manifold with respect to the Levi-Civita connection, then \(M \) is an \(\eta \)-Einstein manifold with respect to the Schouten–van Kampen connection.

8. **Semisymmetric 3-dimensional \(f \)-Kenmotsu manifolds with the Schouten–van Kampen connection**

In this section, we study a semisymmetric regular 3-dimensional \(f \)-Kenmotsu manifold with the Schouten–van Kampen connection. If a 3-dimensional \(f \)-Kenmotsu manifold with the Schouten–van Kampen connection is *semisymmetric* then we can write
\[
(\tilde{R}(X, Y) \cdot \tilde{R})(Z, U)W = 0,
\]
which gives
\[
\tilde{R}(X, Y)\tilde{R}(Z, U)W - \tilde{R}(\tilde{R}(X, Y)Z, U)W
- \tilde{R}(Z, \tilde{R}(X, Y)U)W - \tilde{R}(Z, U)\tilde{R}(X, Y)W = 0.
\]
Using (4.2) in (8.1), we have
\[
\tilde{R}(X, Y)R(Z, U)W - R(\tilde{R}(X, Y)Z, U)W
- R(Z, \tilde{R}(X, Y)U)W - R(Z, U)\tilde{R}(X, Y)W = 0,
\]
which gives
\[
(\tilde{R}(X, Y) \cdot R)(Z, U)W = 0.
\]
Again using (4.2) in (8.2), we obtain
\[
- R(Z, U)R(X, Y)W + g(X, Z)R(Y, U)W - g(Y, U)R(Z, X)W
+ g(X, U)R(Z, Y)W - g(Y, W)R(Z, U)X + g(X, W)R(Z, U)Y
+ f' \{ g(R(Z, U)W, Y) \eta(X) \xi - g(R(Z, U)W, X) \eta(Y) \xi + \eta(R(Z, U)W) \eta(Y)X
\eta(Y) \eta(Z)R(X, U)W + g(Y, U) \eta(R(Z, X)W) \xi + \eta(Y) \eta(Z)R(X, U)W - g(Y, U) \eta(R(Z, X)W) \xi
\]

+ g(X, U) \eta(R(Z, Y)W)\xi - \eta(Y) \eta(U)R(Z, X)W + \eta(X) \eta(U)R(Z, Y)W
- g(Y, W) \eta(R(Z, U)X)\xi + g(X, W) \eta(R(Z, U)Y)\xi
- \eta(Y) \eta(W)R(Z, U)X + \eta(X) \eta(W)R(Z, U)Y \} = 0.

Now from (8.3), we can say:

If \(0 \neq f = \) constant (say \(f = \alpha \)), then \(f' = 0 \). Hence we get \(R \cdot R = -\alpha^2 Q(g, R) \).

Therefore the manifold \(M \) is a pseudosymmetric \(\alpha \)-Kenmotsu manifold.

If \(f \) is not constant, then using \(X = \xi \) in (8.3), we get

\[
\begin{align*}
(8.4) \quad R(\xi, Y)R(Z, U)W - R(R(\xi, Y)Z, U)W - R(Z, R(\xi, Y)U)W \\
- R(Z, U)R(\xi, Y)W + f^2 \{g(R(Z, U)W, Y)\xi - g(R(Z, U)W, \xi)Y \\
- g(Y, Z)R(\xi, U)W + g(\xi, Z)R(Y, U)W - g(Y, U)R(Z, \xi)W \\
+ g(\xi, U)R(Z, Y)W - g(Y, W)R(Z, U)\xi + g(\xi, W)R(Z, U)Y \} \\
+ f'(g(R(Z, U)W, Y)\xi - g(R(Z, U)W, \xi)Y + \eta(R(Z, U)W)Y)\xi \\
- \eta(R(Z, U)W)Y - g(Y, Z)\eta(R(\xi, U)W)\xi + g(\xi, Z)\eta(R(Y, U)W)\xi \\
- \eta(Y) \eta(Z)R(\xi, U)W + \eta(Z)R(Y, U)W - g(Y, U)\eta(R(Z, \xi)W)\xi \\
+ g(\xi, U)\eta(R(Z, Y)W)\xi - \eta(Y) \eta(U)R(Z, \xi)W + \eta(U)R(Z, Y)W \\
- g(Y, W)\eta(R(Z, U)\xi) + g(\xi, W)\eta(R(Z, U)Y) \\
- \eta(Y) \eta(W)R(Z, U)\xi + \eta(W)R(Z, U)Y \} = 0.
\end{align*}
\]

Taking the inner product with \(\xi \) in (8.4), we obtain

\[
(8.5) \quad \eta(R(\xi, Y)R(Z, U)W) - \eta(R(R(\xi, Y)Z, U)W) - \eta(R(Z, R(\xi, Y)U)W) \\
- \eta(R(Z, U)R(\xi, Y)W) + f^2 \{g(R(Z, U)W, Y) - g(R(Z, U)W, \xi)Y \\
- g(Y, Z)\eta(R(\xi, U)W) + g(\xi, Z)\eta(R(Y, U)W) - g(Y, U)\eta(R(Z, \xi)W) \\
+ g(\xi, U)\eta(R(Z, Y)W) - g(Y, W)\eta(R(Z, U)\xi) + g(\xi, W)\eta(R(Z, U)Y) \} \\
+ f'(g(R(Z, U)W, Y) - g(R(Z, U)W, \xi)Y + \eta(R(Z, U)W)Y) \\
- \eta(R(Z, U)W)Y - g(Y, Z)\eta(R(\xi, U)W) + g(\xi, Z)\eta(R(Y, U)W) \\
- \eta(Y) \eta(Z)\eta(R(\xi, U)W) + \eta(Z)\eta(R(Y, U)W) - g(Y, U)\eta(R(Z, \xi)W) \\
+ g(\xi, U)\eta(R(Z, Y)W) - \eta(Y) \eta(U)\eta(R(Z, \xi)W) + \eta(U)\eta(R(Z, Y)W) \\
- g(Y, W)\eta(R(Z, U)\xi) + g(\xi, W)\eta(R(Z, U)Y) \\
- \eta(Y) \eta(W)\eta(R(Z, U)\xi) + \eta(W)\eta(R(Z, U)Y) \} = 0.
\]

Let \(\{e_i\} \ (1 \leq i \leq 3) \) be an orthonormal basis of the tangent space at any point of \(M \). Then the sum for \(1 \leq i \leq 3 \) of the relation (8.5) for \(Y = Z = e_i \) gives

\[
\begin{align*}
\eta(R(\xi, e_i)R(e_i, U)W) - \eta(R(R(\xi, e_i) e_i, U)W) - \eta(R(e_i, R(\xi, e_i)U)W) \\
- \eta(R(e_i, U)R(\xi, e_i)W) + f^2 \{g(R(e_i, U)W, e_i) - g(R(e_i, U)W, \xi)\eta(e_i) \\
- g(e_i, e_i)\eta(R(\xi, U)W) + g(\xi, e_i)\eta(R(e_i, U)W) - g(e_i, U)\eta(R(e_i, \xi)W) \\
+ g(\xi, U)\eta(R(e_i, e_i)W) - g(e_i, W)\eta(R(e_i, U)\xi) + g(\xi, W)\eta(R(e_i, U)e_i) \}
\end{align*}
\]
+ f′{(g(R(e_i, U)W, e_i) − g(R(e_i, U)W, ξ) η(e_i) + η(R(e_i, U)W) η(e_i) − η(R(e_i, U)W) η(e_i) − g(e_i, e_i) η(R(ξ, U)W) + g(ξ, e_i) η(R(e_i, U)W) − η(e_i) η(R(ξ, U)W) + η(e_i) η(R(e_i, U)W) − g(e_i, U) η(R(e_i, ξ)W) + g(ξ, U) η(R(e_i, e_i)W) − η(e_i) η(U) η(R(e_i, ξ)W) + η(U) η(R(e_i, e_i)W) − g(e_i, W) η(R(e_i, U)ξ) + g(ξ, W) η(R(e_i, U)e_i) − η(e_i) η(W) η(R(e_i, U)ξ) + η(W) η(R(e_i, U)e_i)} = 0.

After some calculations, we obtain

\[2(f^2 + f′)S(U, W) - 2g(R(ξ, W)U, ξ)\]

\[-f^2S(U, W) - 2g(R(ξ, W)U, ξ) - 2(f^2 + f′) η(U) η(W)\]

which gives

\[(f^2 + f′)S(U, W) - 2g(R(ξ, W)U, ξ) + 2(f^2 + f′) η(U) η(W)\] = 0.

Let f^2 + f′ ≠ 0. Then from (8.6), we get

\[(f^2 + f′)S(U, W) - 2g(R(ξ, W)U, ξ) + 2(f^2 + f′) η(U) η(W) = 0.\]

Using (3.6) in (8.7), we obtain S(U, W) = −2(f^2 + f′)g(U, W).

Thus we have the following:

Theorem 8.1. Let M be a 3-dimensional regular f-Kenmotsu manifold with
the Schouten–van Kampen connection. If M is semisymmetric with respect to the
Schouten–van Kampen connection, then:

i) If 0 ≠ f = α = constant, then the manifold M is a pseudosymmetric
α-Kenmotsu manifold, or,

ii) If f is not constant, then the manifold M is an Einstein manifold.

9. An example of a 3-dimensional f-Kenmotsu manifold
with the Schouten–van Kampen connection

We consider the 3-dimensional manifold M = \{(x, y, z) ∈ \mathbb{R}^3, z ≠ 0\}, where
(x, y, z) are the standard coordinates in \mathbb{R}^3. The vector fields

\[e_1 = z^2 \frac{∂}{∂x}, \quad e_2 = z^2 \frac{∂}{∂y}, \quad e_3 = \frac{∂}{∂z}\]

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

\[g(e_1, e_3) = g(e_2, e_3) = g(e_1, e_2) = 0, \quad g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1.\]

Let η be the 1-form defined by η(Z) = g(Z, e_3) for any Z ∈ \chi(M). Let φ be the
(1,1) tensor field defined by φ(e_1) = −e_2, φ(e_2) = e_1, φ(e_3) = 0. Then using
linearity of φ and g we have

\[η(e_3) = 1, \quad φ^2Z = −Z + η(Z)e_3, \quad g(φZ, φW) = g(Z, W) − η(Z) η(W),\]
for any $Z,W \in \chi(M)$. Now, by direct computations we obtain

\[[e_1, e_2] = 0, \quad [e_2, e_3] = -\frac{2}{z} e_2, \quad [e_1, e_3] = -\frac{2}{z} e_1. \]

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula which is

\[
\begin{align*}
2g(\nabla_X Y, Z) &= Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) \\
&\quad - g([X, Y], Z) - g(Y, [X, Z]) + g(Z, [X, Y]).
\end{align*}
\]

Using (9.1), we have

\[
2g(\nabla_{e_1} e_3, e_1) = 2g\left(-\frac{2}{z} e_1, e_1\right), \quad 2g(\nabla_{e_1} e_3, e_2) = 0 \quad \text{and} \quad 2g(\nabla_{e_1} e_3, e_3) = 0.
\]

Hence $\nabla_{e_1} e_3 = -\frac{2}{z} e_1$. Similarly, $\nabla_{e_2} e_3 = -\frac{2}{z} e_2$ and $\nabla_{e_3} e_3 = 0$. (9.1) further yields

\[
\begin{align*}
\nabla_{e_1} e_2 &= 0, & \nabla_{e_2} e_2 &= \frac{2}{z} e_3, & \nabla_{e_3} e_2 &= 0, \\
\nabla_{e_1} e_3 &= \frac{2}{z} e_3, & \nabla_{e_2} e_3 &= 0, & \nabla_{e_3} e_3 &= 0.
\end{align*}
\]

From (9.2), we see that the manifold satisfies $\nabla_X \xi = f\{X - \eta(X)\xi\}$ for $\xi = e_3$, where $f = -\frac{2}{z}$. Hence we conclude that M is an f-Kenmotsu manifold. Also $f^2 + f' \neq 0$. Hence M is a regular f-Kenmotsu manifold. \[\Box\]

It is known that

\[
R(X, Y) Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.
\]

With the help of the above formula and using (9.3), it can be easily verified that

\[
\begin{align*}
R(e_1, e_2) e_3 &= 0, \quad R(e_2, e_3) e_3 = -\frac{6}{z^2} e_2, \\
R(e_1, e_3) e_3 &= -\frac{6}{z^2} e_1, \quad R(e_1, e_2) e_2 = -\frac{4}{z^2} e_1, \\
R(e_3, e_2) e_2 &= -\frac{6}{z^2} e_3, \quad R(e_1, e_3) e_2 = 0, \\
R(e_1, e_2) e_1 &= \frac{4}{z^2} e_2, \quad R(e_2, e_3) e_1 = 0, \\
R(e_1, e_3) e_1 &= \frac{6}{z^2} e_3.
\end{align*}
\]

Now the Schouten–van Kampen connection on M is given by

\[
\begin{align*}
\hat{\nabla}_{e_1} e_3 &= \left(-\frac{2}{z} - f\right) e_1, \quad \hat{\nabla}_{e_2} e_3 = \left(-\frac{2}{z} - f\right) e_2, \\
\hat{\nabla}_{e_1} e_2 &= -f(e_1 - \xi), \quad \hat{\nabla}_{e_2} e_2 = 0, \\
\hat{\nabla}_{e_3} e_2 &= \frac{2}{z}(e_3 - \xi), \quad \hat{\nabla}_{e_3} e_2 = 0, \\
\hat{\nabla}_{e_1} e_1 &= \frac{2}{z}(e_1 - \xi), \quad \hat{\nabla}_{e_2} e_1 = 0, \\
\hat{\nabla}_{e_3} e_1 &= 0.
\end{align*}
\]
From (9.5), we can see that \(\tilde{\nabla}_e e_j = 0 \) (\(1 \leq i, j \leq 3 \)) for \(\xi = e_3 \) and \(f = -\frac{2}{z} \). Hence \(M \) is a 3-dimensional \(f \)-Kenmotsu manifold with respect to the Schouten–van Kampen connection. Also using (9.4), it can be seen that \(\tilde{R} = 0 \). Thus the manifold \(M \) is a flat manifold with respect to the Schouten–van Kampen connection. Since a flat manifold is a Ricci-flat manifold with respect to the Schouten–van Kampen connection, the manifold \(M \) is both a projectively flat and a conharmonically flat 3-dimensional \(f \)-Kenmotsu manifold with respect to the Schouten–van Kampen connection. So, from Theorems 5.1 and 6.1, \(M \) is an \(\eta \)-Einstein manifold with respect to the Levi-Civita connection.

Acknowledgement. The author is grateful to the referees for their comments and valuable suggestions for improvement of this work.

References

Education Faculty (Received 10 12 2015)
Department of Mathematics (Revised 08 03 2017)
Inonu University
Malatya
Turkey
a.yildiz@inonu.edu.tr